PřF:Bi6400 Methods of molecular biology - Course Information
Bi6400 Methods of molecular biology
Faculty of ScienceSpring 2023
- Extent and Intensity
- 3/0/0. 3 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. RNDr. Roman Pantůček, Ph.D. (lecturer)
doc. Mgr. Petr Beneš, Ph.D. (lecturer)
Mgr. Jarmila Navrátilová, Ph.D. (lecturer)
prof. RNDr. Zbyněk Zdráhal, Dr. (lecturer)
Ing. Sylva Koudelková, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Roman Pantůček, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Roman Pantůček, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Tue 10:00–12:50 B11/306
- Prerequisites
- SOUHLAS || Ex_3065 Molekulární biologie || Imp_9115 Molekulární biologie || B3120 Molecular and cell biology || B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
Structure and function of nucleic acids and proteins. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 10 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on basic techniques commonly used for study of proteins, nucleic acids and their interactions in living cells and in vitro. It is recommended to all biology students who intend to work in laboratories of basic or applied research. Understanding of principle and practical use of molecular biology methods is emphasized. At the end of the course, students should be able to understand principles of the methods and manage to choose the right methodological approaches to address specific biological phenomena.
- Learning outcomes
- At the end of the course, students should be able to understand principles of the methods and manage to choose the right methodological approaches to address specific biological phenomena.
- Syllabus
- 1. Nucleic acids: manipulation, centrifugation.
- 2. Electrophoretic and microscopic analyses of nucleic acids.
- 3. Hybridisation of nucleic acids: probe preparation, labeling.
- 4. Enzymes in molecular biology.
- 5. Polymerase chain reaction.
- 6. Sequence analyses of nucleic acids, genome sequencing.
- 7. Characterization and using of basic types of vectors.
- 8. Cloning strategies, DNA transfer to prokaryotic and eukaryotic cells, determination of products of cloned genes in host cells.
- 9. Principles of molecular diagnostics.
- 10. Flow cytometry.
- 11. In vitro transcription and translation.
- 12. Protein analyses: electrophoresis, mass spectrometry, sequencing.
- 13. Preparation and use of monoclonal and polyclonal antibodies.
- 14. Analysis of protein-protein and protein-DNA interactions.
- 15 DNA methylation, postranslational modifications of proteins.
- 16 Genome editing, RNA interference.
- Literature
- ŠMARDA, Jan, Jiří DOŠKAŘ, Roman PANTŮČEK, Vladislava RŮŽIČKOVÁ and Jana KOPTÍKOVÁ. Metody molekulární biologie (Methods of molecular biology). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. 1. vydání. ISBN 80-210-3841-1. info
- Teaching methods
- Weekly lectures using powerpoint presentations and demonstration of selected techniques.
- Assessment methods
- Examination is based on written test composed of 60 questions. Correct answering of at least 50% of them is required to pass the test.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
Information on completion of the course: Pro obor Biofyzika je možné zakončení kolokviem
The course is taught annually.
Information on course enrolment limitations: V případě, že student nesplňuje vyžadované prerekvizity pro zápis, je zápis možný s tím, že ukončení tohoto předmětu je podmíněno úspěšným absolvováním předmětu Molekulární biologie (jeden z kódů v prerekvizitách). - Listed among pre-requisites of other courses
- Bi6126 Laboratory sampling for aDNA analysis
Bi6400&&Bi6400c - Bi6400c Methods of Molecular Biology - practice
(Ex_3065 || Imp_9115 || B3120 || B4030 || B5740 || B6130 || B7940 || B4020 || Bi4020 || Bi4035) && NOW(Bi6400) && !B6405 - Bi7420 Modern methods for genome analysis
Bi1700 && (Bi4010 || Bi4020) && (Bi4020c || Bi6400) - Bi8090 Gene engineering
Ex_2979 || Ex_2980 || B6390 || B6400 || Bi6400 || NOW(Bi6400) || souhlas - Bi8312 Practical Course in Molecular Biology of Viruses
Bi6400 - Bi8313 Genetic Engineering - Laboratory Course
!B6492 && (Ex_2979 || Ex_2980 || B6390 || B6400 || Bi6400) && (Bi6405 || B6405 || Bi6400c) && NOW(Bi8090) && !Bi5491
- Bi6126 Laboratory sampling for aDNA analysis
- Enrolment Statistics (Spring 2023, recent)
- Permalink: https://is.muni.cz/course/sci/spring2023/Bi6400