M3521 Geometrie 2

Přírodovědecká fakulta
podzim 2004
Rozsah
2/2/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Anna Sekaninová (přednášející)
Mgr. Leni Lvovská, Ph.D. (cvičící)
Mgr. Miroslava Tkadlecová, Ph.D. (cvičící)
Garance
doc. RNDr. Eduard Fuchs, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Josef Janyška, DSc.
Rozvrh
Út 8:00–9:50 F1 6/1014
  • Rozvrh seminárních/paralelních skupin:
M3521/01: Út 15:00–16:50 N41, L. Lvovská
M3521/02: St 16:00–17:50 UP2, A. Sekaninová
M3521/03: Pá 12:00–13:50 UM, M. Tkadlecová
Předpoklady
Předpokladem je znalost předmětů M1500 Algebra 1 a M 2500 Algebra 2.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem kurzu je analytická teorie lineárních geometrických útvarů zejména v rovině a trojrozměrném prostoru a zvládnutí příslušných výpočetních technik. Podpora prostorové představivosti studentů.
Osnova
  • Afinní prostor, afinní souřadnice. Podprostory afinního prostoru, vzájemné polohy podprostorů. Euklidovský prostor, kartézské souřadnice. Vzdálenosti a odchylky podprostorů.
Literatura
  • SEKANINA, Milan. Geometrie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 197 s. URL info
  • SEKANINA, Milan. Geometrie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1988, 307 s. info
  • HORÁK, Pavel a Josef JANYŠKA. Analytická geometrie. Brno: Masarykova univerzita v Brně, 1997, 151 s. ISBN 80-210-1623-X. info
  • ŠMARDA, Bohumil. Analytická geometrie. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1978, 157 s. info
  • KADLEČEK, Jiří a Jan TROJÁK. Geometrie. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 249 s. info
  • BOČEK, Leo a Jaroslav ŠEDIVÝ. Grupy geometrických zobrazení. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1979, 213 s. info
Metody hodnocení
Výuka: přednáška s klasickým cvičením Zkouška: ústní i písemná
Navazující předměty
Informace učitele
Úspěšné zvládnutí kurzu předpokládá znalost analytické teorie lineárních útvarů podepřené schopností samostatně řešit příslušné příklady.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 1999, podzim 2010 - akreditace, podzim 2000, podzim 2001, podzim 2002, podzim 2003, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.