PřF:F5330 Basic numerical methods - Course Information
F5330 Basic numerical methods
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 1/1/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. RNDr. Jan Celý, CSc. (lecturer)
doc. RNDr. Jan Celý, CSc. (seminar tutor) - Guaranteed by
- prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Jan Celý, CSc. - Timetable
- Fri 11:00–11:50 F4,03017, Fri 12:00–12:50 Fs1 6/1017
- Prerequisites
- A knowledge of the programming (Pascal,Fortran, C,C++)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Biophysics (programme PřF, M-FY)
- Physics (programme PřF, B-FY)
- Physics (programme PřF, M-FY)
- Physics (programme PřF, N-FY)
- Course objectives
- The course presents basic methods for solving systems of linear algebraic equations, for the matrix inversion, for the calculation of eigenvalues and eigenvectors of matrices, singular matrix decomposition and linear regression. Interpolation,splines.The solution of nonlinear equations.
- Syllabus
- 1. Storage of numerical data in a computer. Errors in numerical algorithms, propagation of the errors. Stability of the algorthims. Ill-posed methods. 2. Systems of linear algebraic equations, direct and iterational metods. The Gauss elimination method, pivoting. LU decomposition. Systems with special matrices. The Choleski theorem and the Choleski method. The iteration methods, the Jacobi method, the Gauss-Seidel method. The problem of the convergence of the iteration methods. 3. Eigenvalues and eigenvectors of matrices. The Jacobi-method. The Householder transformation and the QL method. 4. Singular value decomposition and its applications. Linear regression. 5.Interpolation, splines 6. The solution of nonlinear equations
- Literature
- MÍKA, Stanislav. Numerické metody algebry. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1982, 169 s. info
- HUMLÍČEK, Josef. Základní metody numerické matematiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1981, 171 s. info
- CELÝ, Jan. Programové moduly pro fyzikální výpočty. 1. vyd. Brno: Rektorát UJEP, 1985, 99 s. info
- PRESS, William H. Numerical recipes in C : the art of scientific computing. 2nd ed. Cambridge: Cambridge University Press, 1992, xxvi, 994. ISBN 0521431085. info
- MARČUK, Gurij Ivanovič. Metody numerické matematiky. Vyd. 1. Praha: Academia, 1987, 528 s. URL info
- CELÝ, Jan. Řešení fyzikálních úloh na mikropočítačích. 1. vyd. Brno: Rektorát Masarykovy university, 1990, 108 s. ISBN 8021001267. info
- PANG, Tao. An introduction to computational physics. 2nd ed. Cambridge: Cambridge University Press, 2006, xv, 385. ISBN 0521825695. info
- Assessment methods (in Czech)
- přednáška, individální cvičení u počítače, předmět je ukončen zápočtem
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2007, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2007/F5330