M2155 Algebra 1

Faculty of Science
Autumn 2007
Extent and Intensity
2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Radan Kučera, DSc. (lecturer)
Mgr. Jan Herman (seminar tutor)
Guaranteed by
doc. RNDr. Eduard Fuchs, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Timetable
Fri 10:00–11:50 N21
  • Timetable of Seminar Groups:
M2155/01: Wed 18:00–19:50 UM, J. Herman
M2155/02: Wed 16:00–17:50 UM, J. Herman
Prerequisites (in Czech)
! M2150 Algebra I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Základní přednáška z algebry
Syllabus (in Czech)
  • Pojem grupoidu, pologrupy, (komutativní) grupy; příklady grup a pologrup (čísla, permutace, zbytkové třídy, matice, vektory), základní vlastnosti grup (včetně mocniny prvku, řádu prvku). Podgrupa (včetně podgrupy generované množinou). Homomorfismus a izomorfismus (Cayleyova věta, klasifikace cyklických grup), součin grup. Rozklad grupy podle podgrupy (Lagrangeova věta a její důsledky). Faktorizace grup (normální podgrupa, faktorgrupa). Centrum grupy. Konečné grupy, p-grupy, klasifikace konečných komutativních grup, Sylowovy věty. Pojem (komutativního) okruhu, oboru integrity, tělesa, jejich základní vlastnosti. Podokruh (včetně podokruhu generovaného množinou). Homomorfismus a izomorfismus okruhů. Polynomy (základní vlastnosti, dělení polynomu se zbytkem, Euklidův algoritmus, hodnota polynomu v nějakém prvku, kořen polynomu, násobné kořeny, souvislost s derivací polynomu). Polynomy nad okruhy komplexních, reálných, racionálních a celých čísel (ireducibilní polynomy, hledání kořenů polynomu).
Literature
  • ROSICKÝ, Jiří. Algebra. 4., přeprac. vyd. Brno: Masarykova univerzita, 2002, 133 s. ISBN 80-210-2964-1. info
Assessment methods (in Czech)
Standardní přednáška se cvičením
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2008, spring 2012 - acreditation.
  • Enrolment Statistics (Autumn 2007, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2007/M2155