PřF:C5981 Analýza dat a chemometrie v oc - Course Information
C5981 Analýza dat a chemometrie v ochraně kulturního dědictví
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: k (colloquium).
- Teacher(s)
- Mgr. Ing. Lubomír Prokeš, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Jiří Příhoda, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science - Timetable
- Tue 15:00–16:50 C12/311
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The main goal ot this course is to master mathematical methods of data analysis.
- Syllabus
- 1. Principal concepts, probability, Bayes theorem, uncertainty and maze (fuzzy sets).
- 2. Digital and graphic data reprezentation (descriptive statistics), distribution of data and distribution function, transformation and normalization. Simulation methods (Monte Carlo, Bootstrap and Jacknife).
- 3. Measuring errors, exactness and accuracy, reproducibility and repeatability of results. Exactness of calculated values, rounding. Analytical signal and signal noice. Limits of detection and determination. Tolerance and prediction intervals.
- 4. One-dimensional analysis of data (punctual and interval estimations, hypothesis testing, test power, non-parametric tests).
- 5. Stochastic selection, randomization, ANOVA, experimental design.
- 6. Analysis of a plot: correlation, regression analysis, weight and orthogonal regression. Analysis of residues, Bland-Altman graph. Calibration, validation of new methods. Non-linear regression, linearization. Multiple linear regression.
- 7. Extrapolation and interpolation, numeric smoothing and approximation: polynoms a spleens, method of moving average, Savitzky-Golay method, kernels, discreet Fourier transform. Numeric derivation a integration. Convolution a deconvolution. 8. Control charts, analysis od time series.
- 9. Analysis of categorial data, contingent tables.
- 10. Digital and graphic reprezentation of more-dimensional data. Classificatory and regression trees. Growth curves and survival analysis.
- 11. Multidimensional contingent tables, correspondence analysis.
- 12. Advanced methods of data processing and pattern recognition methods. Metaanalysis of data and data mining. Artificial intelligence methods (artifitial neuron nets, fuzzy methods, genetic optimalization).
- Literature
- Meloun M., Militký J.: Kompendium statistického zpracování dat. Academia, Praha, 2001.
- Meloun M., Militký J., Hill M.: Počítačová analýza vícerozměrných dat v příkladech. Academia, Praha 2005.
- Montgomery D. C., Runger G. C.: Applied Statistics and Probability for Engineers. 3rd Ed., Wiley, New York,
- Hendl J.: Přehled statistických metod zpracování dat. Portál, Praha, 2004.
- Berthouex P. M., Brown L. C.: Statistics for Environmental Engineers. 2nd Ed., Lewis Publishers, Boca Raton, 2002.
- Eckschlager K., Horsák I., Kodejš Z.: Vyhodnocování analytických výsledků a metod. SNTL, Praha, 1980.
- Assessment methods
- Lecture, colloquium
- Language of instruction
- Czech
- Further Comments
- Study Materials
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/sci/autumn2008/C5981