PřF:F6030 Quantum mechanics - Course Information
F6030 Quantum mechanics
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 17:00–18:50 Fs2 6/4003, Tue 14:00–15:50 Fs1 6/1017
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Autumn 2009, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2009/F6030