Bi5440 Signály a lineární systémy

Přírodovědecká fakulta
podzim 2011 - akreditace

Údaje z období podzim 2011 - akreditace se nezveřejňují

Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. Ing. Jiří Holčík, CSc. (přednášející)
doc. Ing. Daniel Schwarz, Ph.D. (přednášející)
Garance
prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. Ing. Jiří Holčík, CSc.
Předpoklady
Znalost základních pojmů z oblasti diferenciálního a integrálního počtu, příp. komplexních čísel.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Po absolvování předmětu student: - má základní teoretické a metodologické znalosti principů popisu vlastností a zpracování signálů a časových řad a analýzy lineárních systémů; - dokáže vysvětlit souvislosti a vzájemné vztahy mezi vlastnostmi reálných procesů a jimi generovaných dat a použitými metodami a algoritmy; - umí aplikovat různé metody a algoritmy zpracování dat k dosažení požadovaných výsledků; - navrhnout různé modifikace popisovaných algoritmů vhodné pro zpracování dat specifických vlastností.
Osnova
  • 1. Systémy a signály – základní terminologie. Inspirace praktickými úlohami zpracování biosignálů a použití modelů biologických systémů. 2. Signály. Spojité signály. Základní typy spojitých signálů – periodické, jednorázové. Základní operace se spojitými signály. Rozklad spojitých periodických signálů na harmonické složky – Fourierova řada. 3. Rozklad spojitých neperiodických signálů na harmonické složky – Fourierova trans-formace. Příklady, aplikace. 4. Diskrétní signály. Vzorkování. Základní typy diskrétních signálů a operace s nimi. Rozklad diskrétních signálů na harmonické složky. Příklady, aplikace. 5. Fourierova transformace s diskrétním časem. Diskrétní Fourierova transformace. Im-plementace algoritmu výpočtu Fourierovy transformace. Příklady, aplikace. 6. Konvoluce. Definiční vztahy. Praktický význam. Korelační funkce – autokorelace, křížová korelace. Definiční vztahy, praktický význam. 7. Lineární transformace – Laplacova transformace, z-transformace. Definice, vlastnosti, použití. 8. Systémy. Základní atributy systémů. Lineární a nelineární systémy. Příklady systémů v biologii a medicíně. Systémy a jejich popis – vnější, vnitřní (stavový). 9. Formy vnějšího popisu spojitých lineárních systémů – diferenciální rovnice, obrazová a frekvenční přenosová funkce, frekvenční charakteristiky, rozložení nul a pólů, časo-vé charakteristiky. Vzájemné vztahy mezi jednotlivými způsoby popisu. 10. Formy vnějšího popisu diskrétních lineárních systémů – diferenční rovnice, obrazová a frekvenční přenosová funkce, frekvenční charakteristiky, rozložení nul a pólů, časo-vé charakteristiky. Vzájemné vztahy mezi jednotlivými způsoby popisu. Rozdíly mezi popisem spojitých a diskrétních systémů. 11. Stabilita. Definice. Základní vztahy. Stabilita nelineárních a lineárních systémů. Krité-ria stability. Praktické aplikace. 12. Spojování systémů. Sériové zapojení. Paralelní zapojení. Zpětnovazební zapojení. Vlastnosti zpětnovazebního zapojení, princip zpětnovazební regulace. Obecné spojení systémů – metody postupných úprav, Masonovo pravidlo.
Literatura
  • Oppenheim, A.V. Willsky A.S. Nawab S.H. Signals & Systems. New Jersey, Prentice Hall 1997
  • Kamen, E.W. Heck B.S. Fundamentals of Signals and Systems Using the Web and Matlab. London, Prentice Hall 2000
  • Lathi, B.P. Linear Systems and Signals, Oxford, Oxford University Press 2002
Výukové metody
Přednášky podporované Power Pointovými prezentacemi, přičemž je kladem důraz na pochopení základních principů popisovaných metod a algoritmů. Během přednášek jsou studenti průběžně interaktivně oslovováni s cílem kontrolovat míru jejich pochopení přednášené látky.
Metody hodnocení
ústní zkouška
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 2010 - akreditace, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, jaro 2021, jaro 2022.