PřF:F1421 Basic mathematical methods in - Course Information
F1421 Basic mathematical methods in physics 1
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 3/0. 3 credit(s) (plus 2 credits for an exam). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Lenka Czudková, Ph.D. (lecturer)
prof. RNDr. Jana Musilová, CSc. (lecturer) - Guaranteed by
- prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: Mgr. Lenka Czudková, Ph.D. - Prerequisites
- It is recommended to master basic operations of differential and integral calculus on the secondary school level.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Biophysics (programme PřF, M-FY)
- Physics (programme PřF, M-FY)
- Course objectives
- The course gives the basic review of fundamental mathematical procedures used in physical theories, mainly those of mathematical analysis (differential and integral calculus of one variable and many variables function, ordinary differential equations) and algebra (vector algebra in twodimensional and threedimensional spaces). The understanding of fundamental concepts, calculus, and physical applications are emphasized. The main objectives can be summarized as follows: to get prompt review of basic terms of mathematical analysis and algebra. Routine numerical skills necessary for bachelor course of general physics are trained in the seminar F1422.
- Syllabus
- 1. Derivation and integral of one variable real function, practising of basic operations.
- 2. Fundamentals of vector algebra in R-2 and R-3: vectors, vector calculus, scalar and vector product and their geometrical and physical interpretation, calculus in bases.
- 3. Fundamentals of vector algebra in R-2 a R-3: transformation rules.
- 4. Ordinary differential equations: separation of variables, first-order linear differential equations, physical applications (nuclear fission, absorption of radiation).
- 5. Ordinary differential equations: linear equations of the second and higher order with the constant coefficients, physical applications (equations of a particle motion, harmonic oscillator, damped and forces oscillations).
- 6. Some simple systems of equations of motion.
- 7. Curvilinear coordinates.
- 8. Curvilinear integral: curves, parametrisation, integral of the first type and its physical application (length, mass, centre of mass and moment of inertia of the curve), integral of the second type and its physical application (work along the curve).
- 9. Scalar function of two and three variables: derivation in the given direction, partial derivations, gradient.
- 10. Scalar function of two and three variables: total differential, existence of potential.
- Literature
- required literature
- MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika pro porozumění i praxi I (Mathematics for understanding and praxis I). Vydání druhé, doplněné. Brno: VUTIUM, VUT Brno, 2009, 339 pp. Vysokoškolské učebnice. ISBN 978-80-214-3631-2. info
- recommended literature
- KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
- Teaching methods
- Lectures: theoretical explanation with practical examples.
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (Autumn 2011 - acreditation, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2011-acreditation/F1421