PřF:M3100 Mathematical Analysis III - Course Information
M3100 Mathematical Analysis III
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 4/2/0. 6 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Bedřich Půža, CSc. (lecturer)
RNDr. Mgr. Hana Haladová, Ph.D. (seminar tutor)
Mgr. Kateřina Hanžlová (seminar tutor)
Mgr. Michael Krbek, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 A,01026, Thu 8:00–9:50 A,01026
- Timetable of Seminar Groups:
M3100/02: Wed 12:00–13:50 M4,01024, K. Hanžlová
M3100/03: Thu 10:00–11:50 M4,01024, B. Půža
M3100/04: Thu 12:00–13:50 M4,01024, H. Haladová
M3100/05: Mon 18:00–19:50 M4,01024, H. Haladová
M3100/06: Wed 15:00–16:50 F1 6/1014 - Prerequisites
- M2100 Mathematical Analysis II
The courses Mathematical Analysis I,II are supposed. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics - Economics (programme PřF, M-AM)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The last part of the tree semestrs basic course of the mathematical analysis, devoted to infinite series and integral calculus of functions of several variables. After passing the course, the student will be able: to define and interpret the basic notions used in the basic parts of Mathematical analysis and to explain their mutual context; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in basic fields of analysis; to apply acquired pieces of knowledge for the solution of specific problems including problems of applicative character.
- Syllabus
- I. Infinite number series: series with nonnegative summands, absolute and relative convergence, oprations with infinite series. II. Infinite functional series: pointwise and uniform convergence, power series and their application, Fourier series. III. Integral calculus of functions of several variables: Jordan measure, Riemann integral, Fubini theorem, transformation theorem for multiple integrals, elements of curvelinear integral, integrals depending on a parameter.
- Literature
- JARNÍK, Vojtěch. Integrální počet. Vyd. 2. Praha: Academia, 1976, 763 s. URL info
- DOŠLÁ, Zuzana and Vítězslav NOVÁK. Nekonečné řady. Vyd. 1. Brno: Masarykova univerzita, 1998, 113 s. ISBN 8021019492. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- KALAS, Josef and Jaromír KUBEN. Integrální počet funkcí více proměnných (Integral calculus of functions of several variables). 1st ed. Brno: Masarykova univerzita, 2009, 278 pp. ISBN 978-80-210-4975-8. info
- Teaching methods
- theoretical preparation, exercise
- Assessment methods
- Standard lecture and accompaning seminar, the final exam consists of written test and oral exam. The form of this final exam is the same as for previo0us courses Mathematical Analysis I,II
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2011, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2011/M3100