PřF:Z8101 Photogrammetry - Course Information
Z8101 Photogrammetry
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 1/1. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Petr Dobrovolný, CSc. (lecturer)
Mgr. Andrea Kýnová (seminar tutor) - Guaranteed by
- prof. RNDr. Rudolf Brázdil, DrSc.
Department of Geography – Earth Sciences Section – Faculty of Science
Contact Person: prof. RNDr. Petr Dobrovolný, CSc. - Timetable
- Tue 10:00–10:50 Z4,02028
- Timetable of Seminar Groups:
Z8101/02: Wed 15:00–15:50 Z1,01001b, A. Kýnová - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
The capacity limit for the course is 34 student(s).
Current registration and enrolment status: enrolled: 0/34, only registered: 0/34 - fields of study / plans the course is directly associated with
- Geographical Cartography and Geoinformatics (programme PřF, N-GK)
- Course objectives
- Main objectives is to learn basic principles of photogrammetry with the focus on digital photogrammetry. Methods of aerial imaging are mentioned. Mathematical principles of single-image methods and stereo phtogrammetry are mentioned. Individual stages of digital photogrammetric products are outlined (data acquisition, DTM processing, orthophoto creation). At the end of this course, students should be able to prerare their own products of digital photogrammetry - especially orthopohoto and digital tewrrain mofdel generated from two overlaping images. Program Orthonengine (PCI Geomatica) is utilized during practical exercises. Students would be able to explain when to apply individual image processing methods and make reasoned decisions about preconditions that are necessary for proper utilization of photogrammetric methods in question. He/she would be able to work with information on data preparation, make deductions based on acquired knowledge and properly interpret and evaluate results.
- Syllabus
- 1. Basic concepts, historical overview, methods of photogrammetry 2. Aerial imaging (airplanes, cameras, films, digital photography, GPS support) 3. Main kinds of photographs and their elements. 4. Optical and photographic basis, interpretation of photographs 5. Mathematical basis, projective geometry, coordinate systems, main kinds of distortions on geometry. 6. Single image methods, relief displacement. 7. Stereophotogrammetry, concept of paralax, derivation of height of object and terrain. 8. Principle of stereo plotting device, relative and absolute orientation 9. Digital photogrammetry, attributes of digital image 10. Image transformation, geometric correction, 11. Orthophoto and digital terrain model (DTM), generation, DEM and DTM. 12. Digital photogrammetry workstation, HW and SW tools. 13. Production of topographic maps in the CR using photogrammetry
- Literature
- KONECNY, Gottfried. Geoinformation : remote sensing, photogrammetry and geographic information systems. 1st publ. London: Taylor & Francis, 2002, xiv, 248. ISBN 0415237955. info
- LILLESAND, Thomas M., Ralph W. KIEFER and Jonathan W. CHIPMAN. Remote sensing and image interpretation. 5th ed. Hoboken, N.J.: John Wiley & Sons, 2004, xiv, 763. ISBN 0471152277. info
- KASSER, Michael and Yves EGELS. Digital photogrammetry. London: Taylor & Francis, 2001, xv, 351 s. ISBN 0-748-40945-9. info
- LILLESAND, Thomas M. and Ralph W. KIEFER. Remote sensing and image interpretation. 3rd ed. New York: John Wiley & Sons, 1994, xvi, 750. ISBN 0471577839. info
- Teaching methods
- Lectures explaining basic terms of analytical and digital photogrammetry and presenting individual examples step by step. Practical training based on exercises that are solved using single photo and stere photogrammetry software.
- Assessment methods
- An exam has the form of written test on theory of photogrammetry. Elaboration of all practical excercises and successul pass the practical test at the end of the term are two necessary conditons to advance to the main theoretical examination. Practical test with the use of computer.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught once in two years.
- Enrolment Statistics (Autumn 2011, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2011/Z8101