PřF:M7222 Generalized linear models - Course Information
M7222 Generalized linear models
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 2/1. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Marie Forbelská, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- M6120 Linear Models in Statistics II
Basic knowledge of the theory of estimation and knowledge of linear statistical models of full rank (regression analysis) and not full rank (ANOVA). - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical and Statistical Methods in Economics (programme ESF, N-KME)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The aim of this course is to consider generalized linear models as a broad class of statistical models applying the general principles of likelihood inference to a variety of commonly encountered data analysis problems in many branches such as in biology, medicine, sociology and others. For computer labs the R software environment is used. Upon successful completion of the course students should be able to understand principles of parameter estimation and hypotheses testing in a generalized linear model; apply the methods to build models to address practical objectives; learn to interpret the results properly.
- Syllabus
- Selected topics of statistical estimation theory: family of regular densities, exponential family of distributions, maximal likelihood estimation and its properties. Theory of generalized linear models: generalization of classical linear regression model, construction of generalized linear model and its description, model fitting, minimal, maximal models, submodels, goodness-of-fit measures and residua, testing of adequacy of a model, diagnostics. Gamma regression, models for binary and binomial data, logistic regression, dose response models, models for nominal and ordinal data, Poisson regresion, log-linear models and contingency tables.
- Literature
- An introduction to generalized linear models. Edited by Annette J. Dobson. 2nd ed. Boca Raton: CRC Press, 2002, vii, 225 s. ISBN 1-58488-165-8. info
- FAHRMEIR, Ludwig and Gerhard TUTZ. Multivariate statistical modelling based on generalized linear models. New York: Springer-Verlag, 1994, 425 s. ISBN 0387942335. info
- Teaching methods
- Lectures: theoretical explanation with practical examples
Exercises: solving problems for understanding of basic concepts and theorems, contains also more complex problems. - Assessment methods
- Active participation in seminars (10%), independently developed homework assignments (30%), oral exam with written preparation (60%).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2015, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2015/M7222