M7521 Pravděpodobnost a statistika

Přírodovědecká fakulta
podzim 2016
Rozsah
2/2/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
RNDr. Marie Budíková, Dr.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 19. 9. až Ne 18. 12. Po 8:00–9:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M7521/01: Po 19. 9. až Ne 18. 12. St 14:00–15:50 M6,01011, St 15:00–15:50 MP1,01014, M. Budíková
Předpoklady
M4502 Matematická analýza 4
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Tento předmět obsahuje základní poznatky z popisné statistiky a počtu pravděpodobnosti. Zabývá se pravděpodobnostním prostorem, nezávislými jevy, podmíněnou pravděpodobností, náhodnými veličinami, jejich rozložením a charakteristikami, zákonem velkých čísel a centrální limitní větou. Po absolvování kurzu studenti
- umí získat informace z datového souboru ve formě tabulek, grafů a číselných charakteristik;
- rozumí základním pravděpodobnostním pojmům, jako je klasická, geometrická a podmíněná pravděpodobnost;
- jsou schopni používat důležitá diskrétní a spojitá pravděpodobnostní rozložení v odpovídajících situacích;
- umí vypočítat střední hodnotu, rozptyl, kovarianci a koeficient korelace diskrétních a spojitých náhodných veličin;
- budou mít dobré znalosti systému STATISTICA.
Osnova
  • Popisná statistika. Základní a výběrový soubor, skalární a vektorové znaky, jejich funkcionální charakteristiky při bodovém a intervalovém zpracování dat. Nominální, ordinální, intervalové a poměrové znaky; jejich číselné charakteristiky.
  • Počet pravděpodobnosti. Empirický zákon velkých čísel, axiomatická definice pravděpodobnostního prostoru a základní vlastnosti pravděpodobnosti. Konstrukce pravděpodobnosti v případě diskrétního základního prostoru, klasická pravděpodobnost. Konstrukce pravděpodobnosti na poli borelovských množin, geometrická pravděpodobnost. Stochasticky nezávislé jevy a podmíněná pravděpodobnost.
  • Náhodné veličiny skalární a vektorové, jejich rozložení v obecném, diskrétním a spojitém případě. Simultánní a marginální rozložení náhodných veličin, stochasticky nezávislé náhodné veličiny, posloupnost nezávislých pokusů, různá diskrétní a spojitá rozložení. Kvantily, střední hodnota, rozptyl, kovariance a koeficient korelace náhodných veličin. Konvergence náhodné posloupnosti, slabý zákon velkých čísel, centrální limitní věta.
Literatura
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Popisná statistika. 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 s. ISBN 80-210-1831-3. info
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. 3. vyd. Brno: Masarykova univerzita, 2004, 127 s. ISBN 80-210-3313-4. info
Výukové metody
Výuka probíhá v rozsahu 2 h přednášky a 2 h cvičení týdně. Část cvičení probíhá v počítačové učebně s využitím speciálního statistického software.
Metody hodnocení
V průběhu semestru studenti píší dva testy. Závěrečná písemná zkouška se skládá ze čtyř příkladů, z nichž lze získat až 100 bodů. K úspěšnému zvládnutí je třeba dosáhnout aspoň 51 bodů. Při zkoušce je možno používat studijní literaturu.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 1999, podzim 2010 - akreditace, podzim 2000, podzim 2001, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2017, podzim 2018, podzim 2019, podzim 2020.