PřF:Bi1700 Cell Biology - Course Information
Bi1700 Cell Biology
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Renata Veselská, Ph.D., M.Sc. (lecturer)
prof. RNDr. Jan Šmarda, CSc. (lecturer) - Guaranteed by
- prof. RNDr. Renata Veselská, Ph.D., M.Sc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Renata Veselská, Ph.D., M.Sc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Mon 11:00–12:50 B11/132
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Anthropology (programme PřF, B-AN)
- Biophysics (programme PřF, B-FY)
- Biology (programme PřF, B-BI)
- Biology with a view to Education (programme PřF, B-BI)
- Biology with a view to Education (programme PřF, B-EB)
- Biology with a view to Education (programme PřF, B-FY)
- Biology with a view to Education (programme PřF, B-GE)
- Biology with a view to Education (programme PřF, B-GK)
- Biology with a view to Education (programme PřF, B-CH)
- Biology with a view to Education (programme PřF, B-IO)
- Biology with a view to Education (programme PřF, B-MA)
- Cellular and Molecular Diagnostics (programme PřF, B-BI)
- Ecological and Evolutionary Biology (programme PřF, B-EB)
- Ecological and Evolutionary Biology (programme PřF, B-EB, specialization Botany)
- Ecological and Evolutionary Biology (programme PřF, B-EB, specialization Zoology)
- Medical Genetics and Molecular Diagnostics (programme PřF, B-BI)
- Mathematical Biology (programme PřF, B-BI)
- Mathematical Biology (programme PřF, B-EXB)
- Molecular Biology and Genetics (programme PřF, B-BI)
- Molecular Biology and Genetics (programme PřF, B-EXB)
- General Biology (programme PřF, B-BI)
- General Biology (programme PřF, B-BI, specialization Ekotoxikology)
- General Biology (programme PřF, B-BI, specialization Plant Physiology)
- General Biology (programme PřF, B-BI, specialization Physiology of Animals)
- General Biology (programme PřF, B-BI, specialization Microbiology)
- Special Biology (programme PřF, B-EXB)
- Special Biology (programme PřF, B-EXB, specialization Ecotoxicology)
- Special Biology (programme PřF, B-EXB, specialization Experimental Biology of Plants)
- Special Biology (programme PřF, B-EXB, specialization Experimental Biology of Animals and Immunology)
- Special Biology (programme PřF, B-EXB, specialization Mikrobiology a Molecular Biotechnology)
- Systematic Biology and Ecology (programme PřF, B-BI)
- Systematic Biology and Ecology (programme PřF, B-BI, specialization Systematic Botany and Ecology)
- Systematic Biology and Ecology (programme PřF, B-BI, specialization Systematic Zoology and Ecology)
- Upper Secondary School Teacher Training in Biology (programme PřF, N-BI)
- Upper Secondary School Teacher Training in Biology (programme PřF, N-EB)
- Course objectives
- At the end of the course students should be able to understand basic processes of life on cellular level. He or she should be able to explain their principles and structural components. In addition, he or she should be able to make deductions based on acquired knowledge to explain differences between prokaryotic and eukaryotic cells.
- Learning outcomes
- Student copmletenig this course understands the cellular world and basic principles of its functioning. Specifically: he/she knows basic cellular chemical compounds and their organization to functional complexes; principles of maintaing and expression of genetics information; the logic of internal organization of a cell to compartments and the way of communication among them; basic mechanisms of cell cycle control and intracellular signalling; pathological behavior of cells; origin and evolution of cells.
- Syllabus
- 1) CHEMISTRY OF A CELL (atoms - molecules - macromolecules; chemical elements in living systems; atomic bonds in molecules; polar and nonpolar molecules; significance of water for chemistry of a cell; main types of organic molecules; saccharides, fatty acids, aminoacids, nucleotides; formation of polymers from monomers in essential cell polymers - nucleic acids and proteins).
- 2) CELLULAR AND NONCELLULAR FORMS OF LIFE (history and technical limits of cellular analyses by microscopy; light and electron microscopy; organization of living system; noncellular forms of life; cellular forms of life - types of prokaryotic and eukaryotic cells, basic characteristic; principles of functional organization of a cell)
- 3) BIOMEMBRANES AND INTERNAL CELL ORGANIZATION (structure and function of biomembranes; transport function of biomembranes; plasmatic membrane; osmotic phenomena; biomembranes of prokaryotic cells; compartmentalization of eukaryotic cells; organelles of eukaryotic cells - composition and function; membrane fusion; principles of vesicular transport; endocytosis and exocytosis)
- 4) STORAGE AND EXPRESSION OF GENETIC INFORMATION (definitions of a gene and genetic information; main functions of genetic material; chemistry of genetic material; structure of DNA and RNA; replication of DNA;, principles of gene expression; prokaryotic and eukaryotic transcription; modification of primary transcript; RNA splicing; translation and genetic code)
- 5) CYTOSKELETON (components and basic functions; methods of visualization; microtubules; actin filaments; intermediate filaments; nuclear and cortical skeleton; cytoskeleton of prokaryotes)
- 6) INTRACELLULAR TRANSPORT (cell compartmentalization; protein folding and chaperons/chaperonins; protein sorting; protein import to membrane organelles; transport of molecules to nucleus; secretion and endocytic pathways; transport vesicles; endoplasmic reticulum and Golgi apparátu in intracellular transport)
- 7) CELL CYCLE (phases and kinetics of a cell cycle; the role of yeasts in the cell cycle research; methodical approaches to cell cycle analyses; molecular principles of cell cycling; cell cycle regulators; types of cyclins; cell cycle checkpoints; p53 and Rb proteins in cell cycle regulation)
- 8) CELL DIVISION (types of cell division; binary division in prokaryotes; changes of chromatin during eukaryotic cell division; composition of eukaryotic chromosomes; mitosis and meiosis; roles and phases of mitosis and meiosis; cytokinesis in plant and animal cells)
- 9) CELL COMMUNICATION (principles of cell signaling, types of signal molecules; the role of chemical properties of signals; types of receptors; endocrine and paracrine signaling; synapses; transfer of extracellular signals to intracellular secondary messengers; G proteins; MAPK signaling pathway; cytokine signaling; SH2 domain; effectors of signaling pathways)
- 10) CELL PATHOLOGY (physiological and pathological life conditions; cell response to stress; types of stress factors; physical stress factors - temperatures shifts, visible light, UV light, ionizing radiation; chemical stress factors - nonspecific toxins, specific inhibitors; biological stress factors - intracellular parasitism; types of cell death; catastrophic cell death - necrosis: induction, characteristics; physiological cell death - autophagy, apoptosis: induction, characteristics)
- 11) CELL EVOLUTION (hypotheses on origin of organic compounds and biopolymers; Miller test; ribozymes and RNA world; primitive proteosynthesis; encapsulation; origin of first cells; evolutionary relations among cells; origin and development of eukaryotic cell; endosymbiotic theory)
- Literature
- recommended literature
- SNUSTAD, D. Peter and Michael J. SIMMONS. Genetika. Translated by Jiřina Relichová. Druhé, aktualizované vydá. Brno: Masarykova univerzita, 2017, xix, 844. ISBN 9788021086135. info
- ALBERTS, Bruce. Základy buněčné biologie : úvod do molekulární biologie buňky. Translated by Arnošt Kotyk. 2. vyd. Ústí nad Labem: Espero Publishing, 2004, xxvi, 630. ISBN 8090290620. info
- Teaching methods
- lectures
- Assessment methods
- Written test is required. To pass the exam, at least 50% of answers have to be correct.
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- LF:AMOLp Introduction into molecular biology and genetics - lecture
(!VSBI0222p) && (!VLBI0222p) && (!ZLBI0222p) && (!PřF:Bi1700) - LF:BLKH0311c Clinical Haematology - practice
BLMB011p || PřF:Bi1700 - LF:BLKH0311p Clinical Haematology - lecture
BLMB011p || PřF:Bi1700 - LF:VLMB011 Modern imaging and analytical methods in cellular biology
VLBI0222p || ZLBI0222p || PřF:Bi1700 || VSBI0222p - Bi1190 Biology of Plant Cell
Bi1700 && Bi1060 && Bi4060 - Bi1700c Cell Biology - practical course
NOW(Bi1700) - Bi1700en Cell Biology
(!Bi1700) && !NOWANY(Bi1700) - Bi2020 Scientific Work in Cell Biology
Bi1700 - Bi2021 Information technology in cell biology
Bi1700
- LF:AMOLp Introduction into molecular biology and genetics - lecture
- Enrolment Statistics (autumn 2017, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2017/Bi1700