Bi9680enc Artificial Intelligence in Biology, Chemistry, and Bioengineering - practice

Přírodovědecká fakulta
podzim 2022
Rozsah
0/1/0. 1 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: k.
Vyučující
Faraneh Haddadi (cvičící)
Stanislav Mazurenko, PhD (cvičící)
Ing. Jan Velecký (cvičící)
Garance
prof. Mgr. Jiří Damborský, Dr.
Ústav experimentální biologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: Stanislav Mazurenko, PhD
Dodavatelské pracoviště: Ústav experimentální biologie – Biologická sekce – Přírodovědecká fakulta
Rozvrh
St 17:00–18:50 B09/316
Předpoklady
Bi9680en AI in Bioengineering || NOW( Bi9680en AI in Bioengineering )
No prior experience in programming is expected.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
The main objective of this course is to provide students with hands-on experience in programming simple examples of machine-learning-based predictors in Python. The practicals will follow the theory presented during the lectures of Bi9680en. We will cover the basics of programming, some useful libraries for data analysis and machine learning, and create simple predictors for biologically-relevant data.
Výstupy z učení
After completing the course, a student will be able to:
- understand the basics of the code flow;
- operate with basic types of variables, functions, if-conditions, and for-loops;
- operate the Spyder editor;
- implement a simple machine learning workflow in Python;
- train and validate simple predictors;
- reproduce an uncomplicated machine-learning study.
Osnova
  • Introduction to programming in Python – the first code;
  • Booleans, if-conditions, for-loops, basic functions;
  • Introduction to NumPy and pandas libraries;
  • Hierarchical clustering;
  • Decision trees;
  • Cross-validation;
  • Case study in bioengineering.
Výukové metody
7 practical sessions in the computer lab, homework
Metody hodnocení
In order to pass, a student must complete a series of short homework assignments.
Vyučovací jazyk
Angličtina
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2020, podzim 2021, podzim 2023, podzim 2024.