M9PNM3 Advanced numerical methods III

Faculty of Science
Autumn 2022
Extent and Intensity
2/1. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
Mgr. Jiří Zelinka, Dr. (lecturer)
Guaranteed by
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science
Timetable
Fri 8:00–9:50 MP2,01014a
  • Timetable of Seminar Groups:
M9PNM3/01: Fri 10:00–10:50 MP2,01014a, J. Zelinka
Prerequisites
Basics of Hilbert spaces theory.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of this course is to get acquainted in more with detail some methods for numerical solution of partial differential equations, especially with the finite element method.
Learning outcomes
Student will be able to:
- use finite element method for numerical solution of partial differential equation
- implement the method with the use of suitable software
Syllabus
  • Theoretical foundations
  • One-dimensional problems (problem formulation, finite element method)
  • Plane problems (problem formulation, triangulation, different types of problems)
  • Nonlinear problems
  • Spatial problems
Literature
    recommended literature
  • REKTORYS, Karel. Variační metody : v inženýrských problémech a v problémech matematické fyziky. Vyd. 6., opr. české 2. Praha: Academia, 1999, 602 s. ISBN 8020007148. info
  • VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
  • VITÁSEK, Emil. Numerické metody. Praha: Státní nakladatelství technické literatury, 1987, 512 s. URL info
  • REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
  • RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
Teaching methods
Lectures and computer exercises
Assessment methods
Oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms autumn 2021, Autumn 2023.
  • Enrolment Statistics (Autumn 2022, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2022/M9PNM3