Rostliny – základ života na Zemi

Představení studijního programu

V rámci navazujícího magisterského programu Experimentální biologie rostlin si prohloubíte znalosti získané v bakalářském studiu a získáte více praktických dovedností při experimentální práci v laboratoři i v terénu. Studium vám umožní lépe porozumět transportním, metabolickým a regulačním procesům u rostlin a chápat jejich vzájemné souvislosti. Také vám umožní lépe porozumět reakcím rostlin na podmínky vnějšího prostředí a mechanismům, které za nimi stojí.

Naučíte se samostatně získávat aktuální vědecké informace z nejrůznějších zdrojů, kriticky je hodnotit a zpracovávat do ucelených zpráv. Získáte také praktické dovednosti jako je samostatné provádění a vyhodnocování vědeckých experimentů, včetně využití pokročilých statistických metod, a obsluhování měřicích přístrojů. Výsledky budete prezentovat v souvislosti s nejnovějšími poznatky. 

Studentské projekty většinou úzce navazují na probíhající výzkum, takže výsledky studentských prací můžete uplatnit jako součást vědeckých publikací. Během studia se také můžete zúčastnit krátkých stáží a navštívit jiná pracoviště v České republice i v zahraničí a získat tak další cenné zkušenosti. Mimořádně talentovaní studenti se také mohou účastnit mezinárodních konferencí a vědeckých expedicí.

Je studium programu pro vás?

Odpovězte si na následující otázky:

  • Fascinuje vás schopnost rostlin přežít v často extrémních podmínkách?

  • Chtěli byste se podílet na řešení vážného problému s nedostatkem potravin ve světě?

  • Zajímá vás, jak a proč se změní společenstva rostlin kolem nás se změnou klimatu?

Souhlasně přikyvujete? Potom je studium v tomto programu správná volba.

Studijní plány

Přijímací řízení
Dodatečné přijímací řízení do navazujícího magisterského studia 2024/2025
Termín podání do půlnoci 18. 8. 2024

  • Informace o přijímacích zkouškách v tomto studijním programu

    Přijímací zkouška je písemná formou specializačního testu z oblasti Experimentální biologie rostlin.

    Okruhy k přijímací zkoušce

    • Bi1060 Cytologie a anatomie rostlin: Rostlinná buňka: specifické znaky a typické struktury, speciální typy rostlinných buněk. Rostlinná pletiva: klasifikace pletiv, jednoduchá a složená pletiva, meristémy (primární a sekundární), krycí, základní a vodivá pletiva (vývoj, struktura xylému a floému, typy cévních svazků). Anatomie kořene: funkce kořene, typ kořenové soustavy, apikální meristém kořene, kořenová čepička, rhizodermis, kůra, endodermis, stélé (pericykl, radiální svazek cévní, změna vodivého systému v hypokotylu). Anatomie stonku: funkce stonku, modifikace stonku, apikální meristém stonku, primární stavba stonku (ataktostélé, eustélé). Anatomie listu: funkce listů, epidermis a její deriváty (průduchy, hydatody, trichomy), mezofyl, vodivý systém, monofaciální a bifaciální list, list nahosemenných rostlin. Sekundární růst kořene a stonku: aktivita sekundárních meristémů. Vliv vnějších faktorů na stavbu rostlinných orgánů.
    • Bi4060 Fyziologie rostlin: Obecné principy transportních procesů v rostlinách,energetika transportu, chemický a vodní potenciál. Transport vody v xylému, transport rozpuštěných látek přes membrány, translokace v lýku, průduchová regulace výměny plynů. Světelné reakce fotosyntézy, regulace a strukturní změny fotosyntetického aparátu. Fotosyntetická redukce oxidu uhličitého, fotorespirace, koncentrační mechanismy C4 a CAM. Konverze primárních asimilátů, alokace uhlíkatých látek v rostlinných orgánech a jejich využití v růstových procesech. Asimilace dusíku a dalších minerálních živina jejich funkční využití v rostlině. Specifické znaky růstových procesů u rostlin, embryogeneze a klíčení semen. Fytohormonálníregulace růstu a vývoje, hlavní skupiny fytohormonů a mechanismus jejich účinku. Působení světelného a teplotního režimu na růst a vývoj. Obecná koncepce stresu u rostlin, reakce na extrémní vnější podmínky fyzikálního a chemického charakteru(zejména extrémní teploty, dostupnost záření, dostupnost vody a toxické látky v prostředí) Mechanismy adaptace rostlin k působení stresorů. Interakce rostlin s jinými organismy(symbiotické vztahy, fytopatogeny, herbivoři, paraziti) a regulace těchto vztahů.
    • Bi6120 Rostlinné explantáty: Definice pojmů: explantát, aseptická kultura, axenická kultura, in vitro, tkáňové kultury. Způsoby kultivace. Podmínky axenické kultury, sterilizace a desinfekce rostlinného materiálu a pomůcek, výživa, fyzikální podmínky. Složení živných médií: anorganické látky, organické látky, zdroj uhlíku, růstové regulátory, aktivní uhlí, ztužování. Fytohormony a jejich hlavní funkce v rostlinách: auxiny, cytokininy, gibereliny, kyselina abscisová, ethylen. Růstové regulátory. Mikropropagace: výhody a nevýhody, typy mikropropagace, stadia mikropropagace, Vitrifikace. Kalusové kultury: iniciace kalogeneze, využití kalusových kultur. Sekundární metabolity a biotechnologie: hairy roots, prýtové kultury, elicitace, biokonverze, suspenzní kultury, základní typy bioreaktorů pro rostliny in vitro. Opylování in vitro: bariéry inkompatibility a možnosti jejich překonávání in vitro. Izolace zygotických embryí: vývojová stadia zygotických embryí, možnosti využití metody. Somatická embryogeneze: přímá a nepřímá somatická embryogeneze, původ a stavba somatických embryí, maturace a konverze somatických embryí, umělá semena. Indukce haploidních rostlin: a) androgeneze - přímá a nepřímá: prašníkové a mikrosporové kultury, dihaploidizace, b) gynogeneze. Transgenoze: Geneticky modifikované organismy (GMO), využití transgenních rostlin, metody transformace. Kryoprezervace: kryoprotektiva, pomalé a rychlé zmrazování, využití kryoprezervace - genové banky.
    • Bi7570 Fyziologická ekologie rostlin: Intercepce záření listy a porosty rostlin. Fotoinhibiční a destrukční účinky záření a mechanismy ochrany. Energetická bilance listu, účinky chladu a mrazu na rostliny, odolnost k extrémním teplotám (nízkým i vysokým). Spektrálně závislé růstové procesy, fotoperiodicita. Působení nedostatku vody na fyziologické procesy, řízení příjmu a výdeje vody. Efektivita využití vody u C3, C4 a CAM rostlin. Dostupnost minerálních živin v půdě, adaptace k nedostatku živin. Účinek toxických sloučenin v přírodním prostředí na rostliny a ochranné mechanismy rostlin. Strategie a mechanismy přežívání rostlin na půdách hypoxických, silně kyselých a vápenitých. Kompetice, allelopatie, odolnost rostlin vůči patogenům a herbivorům. Růstové strategie v různých typech prostředí.
    • Bi7160 Minerální výživa rostlin: Zdroje živin a jejich dostupnost v půdě, transportní procesy v půdě. Příjem minerálních živin: membránový transport, energetika a kinetika příjmu. Symbiotická fixace vzdušného dusíku. Příjem a asimilace nitrátových a amonných iontů. Využití dusíku v rostlinách, interakce mezi N a C metabolismem. Příjem a využití fosfátových iontů, projevy deficience P. Mechanismy příjmu a fyziologický význam K, Ca, Mg, S, Fe u různých typů rostlin. Příjem a fyziologický význam mikroživin a benefičních prvků u různých typů rostlin. Efektivita využití živin a procesy ovlivňující bilanci živin v rostlině. Výživa masožravých rostlin. Minerální výživa rostlin v zemědělství – hnojení a hnojiva.
    • Bi6150 Mykorhizní symbiózy: Symbióza - koncept, mutualismus, parazitismus, komenzalismus, neutralismus, kompetice, fakultativní a obligátní symbionti. Mykorhizní symbiózy - arbuskulární mykorhiza, ektomykorhiza, ektendomykorhiza, orchideoidní, arbutoidní, monotropoidní a erikoidní mykorhiza. Rozšíření, systematické zařazení symbiontů. Vnitrokořenové a mimokořenové struktury. Ekofyziologické funkce mykorhiz (model multifunkcionality). Ovlivnění metabolismu hostitele - látkové toky mezi symbionty (uhlíkaté látky, fosfáty a jiné málo mobilní živiny, dusíkaté látky, voda). Vztahy k jiným půdním mikroorganismům - bakterie, saprotrofní a parazitické houby. Ovlivnění růstu hostitele a jeho kompetičních schopností (model nákladů a zisku). Role mykorhiz ve složení společestev rostlin. Myko-heterotrofie. Role mykorhiz v životních cyklech hostitelských rostlin. Fixátoři N2. Systematické zařazení symbiontů. Biochemie fixace N2. Duální symbióza. Ovlivnění růstu rostlin.

    Přijímací zkouška se koná 3. 9. 2024 v 9.30 v učebně 333 v pavilonu B11, Univerzitní kampus MU, Kamenice 5, Brno. Uchazeči se dostaví 30 minut před stanoveným začátkem zkoušky k registraci.

  • Doporučená literatura ke zkouškám v tomto studijním programu
    Literatura doporučená k bakalářské státní zkoušce dané vědní discipliny
  • Kritéria hodnocení uchazečů o tento studijní program
    Uchazeči jsou přijímáni na základě výsledků písemné přijímací zkoušky, pokud jim nebyla prominuta, podle kapacitních možností programu.

Studium

  • Cíle

    Cílem studia v tomto programu je prohloubení znalostí v biologii rostlin získaných v bakalářském studiu. Zejména je kladen důraz na praktické znalosti a dovednosti při experimentální práci. Tyto získané schopnosti zvyšují atraktivitu uplatnění absolventů zejména ve výzkumných a kontrolních organizacích i soukromých firmách zaměřených na výzkum a vývoj.

  • Výstupy z učení

    Absolvent je po úspěšném ukončení studia schopen:

    • dobře se orientovat ve stavbě různých typů rostlinných buněk, pletiv a orgánů a je schopen samostatně pozorovat struktury ve světelném mikroskopu.
    • rozumět transportním, metabolickým a regulačním procesům u rostlin a chápat jejich vzájemné souvislosti.
    • orientovat se v reakcích rostlin na podmínky vnějšího prostředí a rozumět mechanismům těchto reakcí.
    • samostatně získávat aktuální vědecké informace z relevantních zdrojů, kriticky je hodnotit a zpracovávat je do ucelených zpráv.
    • tvůrčím způsobem samostatně provádět výzkumnou a vývojovou činnost v různých oblastech experimentální biologie včetně vedení výzkumných projektových týmů.
    • vlastní výsledky zpracovat, zařadit do současného stavu poznání, prezentovat je, diskutovat a obhájit.
    • komunikovat o výsledcích své práce i obecně v oblasti přírodních věd v českém i anglickém jazyce.
  • Uplatnění absolventa

    Díky rozsahu absolvovaných kurzů a příležitosti nabýt praktických zkušeností můžete hledat uplatnění v základním i v aplikovaném biologickém výzkumu a také v oborech souvisejících s chemií životního prostředí, aplikovanou ekologií či ochranou životního prostředí. 

    Po ukončení studia získáte kvalifikaci pro práci ve státních i soukromých výzkumných ústavech (např. zemědělské výzkumné ústavy), v kontrolních organizacích (např. Ústřední kontrolní a zkušební ústav zemědělský, Státní rostlinolékařská správa) nebo ve vzdělávacích institucích (na úrovni VŠ studia). 

    Uplatnění můžete najít také ve firmách zabývajících se projekty v oblasti ochrany životního prostředí, podporou zemědělské produkce nebo vývojem a výrobou vědeckých přístrojů. Část absolventů také pracuje v některých složkách státní správy (ministerstva, městské úřady, Agentura ochrany přírody apod.).

  • Pravidla a podmínky pro vytváření studijních plánů

    Bakalářské a magisterské studium probíhá podle celouniverzitního kreditního systému, který je v souladu s pravidly European Credit Transfer System (ECTS). Povinně volitelné předměty jsou ve studijním plánu organizovány do jedné čí více skupin; student volí povinně volitelné předměty na základě stanoveného minimálního počtu kreditů v každé skupině.

    Celouniverzitní pravidla pro tvorbu studijních programů, která zpřesňují pravidla vymezená v metodice Národního akreditačního úřadu Doporučené postupy pro přípravu studijních programů, upravuje směrnice Masarykovy univeritzy č. 1/2024 Pravidla pro tvorbu studijních programů a programů celoživotního vzdělávání. Směrnice vymezuje šest typů studijních plánů a jejich použití a kombinace v jednotlivých typech studijních programů. Jedná se o

    1. jednooborový studijní plán,
    2. studijní plán se specializací,
    3. hlavní studijní plán (maior),
    4. vedlejší studijní plán (minor),
    5. studijní plán ve spolupráci s jinou vysokou školou či jinou právnickou osobou,
    6. studijní plán na dostudování (určen pouze pro dostudování ve studijním oboru, studijním programu nebo studijním plánu, který zanikne).

    Premisou pravidel je, že studijní plány umožňují naplnění cílů studia a dosažení profilu absolventa studijního programu. Výjimkou je pouze vedlejší studijní plán, který doplňuje hlavní studijního plán jiného studijního programu. Student nemůže studovat pouze podle vedlejšího studijního plánu.

  • Praxe

    Praktické zkušenosti absolventů nejsou striktně vyžadovány. Pracovní stáže na výzkumných institucích doma i v zahraničí vám však budou doporučovány a budeme vás v nich podporovat.

  • Cíle kvalifikačních prací

    Diplomová práce má charakter samostatné experimentální vědecké práce zahrnující stručný přehled současných poznatků o tématu, cíle a hypotézy, metodiku, výsledky, diskusi výsledků a přehled použitých informačních zdrojů. Autor má prokázat schopnost testovat experimentální hypotézy, výsledky správně statisticky vyhodnotit, prezentovat je vhodným způsobem v tabulkách a grafech a následně také interpretovat v souvislosti s aktuálními poznatky v dané oblasti.

  • Návaznost na další studijní programy

    Po absolvování navazujícího magisterského studia se můžete hlásit k postgraduálnímu studiu „Anatomie a fyziologie rostlin“.

Základní údaje

Zkratka
N-EBR
Typ
magisterský navazující
Profil
akademický
Titul
Mgr.
Titul v rigorózním řízení
RNDr.
Doba studia
2 roky
Vyučovací jazyk
čeština čeština

10
odhadovaný počet přijatých
5
počet aktivních studentů
14
počet závěrečných prací

Přírodovědecká fakulta
Program zajišťuje