FI:PV115 Laboratory of KD - Course Information
PV115 Laboratory of Knowledge Discovery
Faculty of InformaticsAutumn 2024
- Extent and Intensity
- 0/0/2. 2 credit(s). Type of Completion: z (credit).
In-person direct teaching - Teacher(s)
- doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Lubomír Popelínský, Ph.D.
Department of Machine Learning and Data Processing – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable of Seminar Groups
- PV115/01: Tue 24. 9. to Tue 17. 12. Tue 14:00–15:50 A321, L. Popelínský
- Prerequisites (in Czech)
- SOUHLAS
Předpokladem pro zápis do předmětu je 1) schopnost samostatné práce v oblasti ML 2) schválení přihlášky vedoucím laboratoře (kapacita labu i vedoucího spíše omezená) 3) schopnost práce v týmu; Zájemci o dlouhodobější zapojení či spoluprácující na projektech laboratoře mají přednost. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 10 student(s).
Current registration and enrolment status: enrolled: 2/10, only registered: 1/10, only registered with preference (fields directly associated with the programme): 0/10 - fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to create systems for knowledge discovery in data.
- Learning outcomes
- A student will be able
- to understand research papers from machine learning and data mining;
- of critical reading of such papers;
- to build and validate a machine learning or data mining method. - Syllabus
- Students participate on research projects in various areas of knowledge discovery and data mining:
- Project proposal
- Consultation during the term
- Presentation of results, a final report It is appropriate for those who look for help in solving more complex tasks of machine learning and data mining.
- Literature
- recommended literature
- Peter Flach: Machine learning : the art and science of algorithms that make sense of data. Cambridge ; New York : Cambridge University Press, c2012
- HAN, Jiawei and Micheline KAMBER. Data mining : concepts and techniques. 2nd ed. San Francisco, CA: Morgan Kaufmann, 2006, xxviii, 77. ISBN 1558609016. URL info
- Teaching methods
- Work on a project under a supervision of the head of the laboratory.
- Assessment methods
- A project defense, a credit
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/kd/
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/autumn2024/PV115