MB003 Lineární algebra

Fakulta informatiky
jaro 2008
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. RNDr. Jan Paseka, CSc. (přednášející)
Mgr. David Kruml, Ph.D. (cvičící)
prof. Dr. rer. nat. RNDr. Mgr. Bc. Jan Křetínský, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Paseka, CSc.
Fakulta informatiky
Rozvrh
Pá 11:00–12:50 D2
  • Rozvrh seminárních/paralelních skupin:
MB003/01: Pá 14:00–15:50 B007, J. Paseka
MB003/02: Po 10:00–11:50 B007, J. Křetínský
MB003/03: Út 10:00–11:50 B003, D. Kruml
MB003/04: Út 12:00–13:50 B003, D. Kruml
Předpoklady
! MB102 Matematika II &&!NOW( MB102 Matematika II )
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
V kurzu jsou prezentovány základy lineární algebry a geometrie. Hlavní pozornost je věnována maticím, soustavám lineárních rovnic a lineárním zobrazením.
Osnova
  • Skaláry, vektory a matice: Vlastnosti známých číselných oborů, pole a vektorové prostory, příklady vektorových prostorů, $R^n$ a $C^n$, zápis systémů lineárních rovnic pomocí matic, operace s maticemi, elementární řádkové a sloupcové transformace, Gaussova eliminace, výpočet inverzní matice.
  • Vektorové prostory -- základní pojmy: Lineární kombinace vektorů, lineární závislost a nezávislost, báze, dimenze, podprostory, součty a průniky podprostorů, souřadnice.
  • Lineární zobrazení: Definice, obraz a jádro, izomorfizmus, matice zobrazení v daných bázích, matice přechodu od jedné báze k druhé bázi, změna matice zobrazení při změně bází.
  • Soustavy lineárních rovnic: Množiny řešení homogenních a nehomogenních rovnic, hodnost matice, Frobeniova věta.
  • Determinanty: Permutace, definice determinantu, základní vlastnosti, Laplaceův rozvoj, aplikace na výpočet inverzní matice, Cramerovo pravidlo.
  • Afinní podprostory v $ R ^n$: Definice, zaměření afinního podprostoru, parametrický a implicitní popis, vzájemná poloha afinních podprostorů, afinní zobrazení.
  • Skalární součin v $ R ^n$: Definice a základní vlastnosti skalárního součinu.
Literatura
  • Zlatoš, Pavol. Lineárna algebra a geometria. Předběžná verze učebních skript MFF UK v Bratislavě.
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Bude vyžadováno početní i teoretické zvládnutí přednesené látky (porozumění základním pojmům a větám, jednoduché důkazy).
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Požadavky k získání zápočtu ze cvičení a tedy k přístupu ke zkoušce (podle čl.19, odst.3 a čl.18, odst.1 Studijního a zkušebního řádu MU): Podmínkou pro přístup ke zkoušce je pravidelná účast ve cvičeních s tím, že tolerovány jsou nanejvýš dvě neomluvené absence za semestr. V průběhu semestru se budou psát 2 kontrolní písemky, každá z nich bude bodově hodnocena v rozsahu od 0 do 10 bodů. Celkově tak bude možno dostat až 20 bodů; požadavkem k zápočtu je získat z toho nejméně 8 bodů. Body z kontrolních písemek budou započteny do výsledného hodnocení studenta. Požadavkem k úspěšnému vykonání zkoušky, která je pouze písemná, je teoretické i praktické zvládnutí látky v rozsahu probraném na přednášce a procvičeném ve cvičeních. Další upřesňující informace budou uveřejňovány v části Studijní materiály předmětu MB003 Lineární algebra a geometrie I. Zejména se jedná o práci během semestru a způsob hodnocení. Průběh a hodnocení písemné zkoušky: Písemná zkouška se bude konat v termínech vypsaných v Informačním systému podle čl.16, odst.5,6 Studijního a zkušebního řádu MU, ovšem výhradně v průběhu zkouškového období jarního semestru. Výsledky písemné zkoušky budou zveřejněny v Informačním systému nejpozději třetí den po konání této zkoušky k večeru.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2009, jaro 2010, jaro 2011, jaro 2012.