IB101 Introduction to Logic and Logic Programming

Faculty of Informatics
Spring 2009
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
doc. RNDr. Jan Bouda, Ph.D. (seminar tutor)
Mgr. Jan Doleček (seminar tutor)
Mgr. Lukáš Másilko (seminar tutor)
Mgr. Ondřej Nečas (seminar tutor)
RNDr. Jan Blaťák, Ph.D. (seminar tutor)
Mgr. Eva Mráková, Ph.D. (seminar tutor)
Mgr. Adam Šiška (seminar tutor)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Timetable
Mon 10:00–11:50 D1
  • Timetable of Seminar Groups:
IB101/01: Thu 8:00–9:50 D1, J. Bouda
IB101/02: Thu 10:00–11:50 D2, J. Bouda
IB101/03: Mon 14:00–15:50 D3, A. Šiška
IB101/04: Tue 18:00–19:50 D3, J. Blaťák, L. Popelínský
Prerequisites (in Czech)
! IA008 Computational Logic
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 18 fields of study the course is directly associated with, display
Course objectives
The goal of the course is an introduction to propositional and first-order logic, resolution principle, logic programming and computational logic, and inductive inference and knowledge representation.
Syllabus
  • Survey of logic calculi, syntax.
  • Propositional logic, truth tables, axioms, provability.
  • Essentials of proof theory in propositional logic, normal forms, resolution.
  • First-order predicate calculus, predicate formulas, semantics, axioms, provability.
  • Normal forms in predicate logic, skolemization.
  • Essentials of proof theory in predicate logic, resolution.
  • Introduction to logic programming, SLD-resolution. Basics of Prolog language.
  • Basics of inductive inference and knowledge representation.
Literature
  • ŠTĚPÁN, Jan. Klasická logika. 1. vyd. Olomouc: Univerzita Palackého v Olomouci, 2001, 198 s. ISBN 8024402548. info
  • NERODE, Anil and Richard A. SHORE. Logic for applications. New York: Springer-Verlag, 1993, xvii, 365. ISBN 0387941290. info
Assessment methods
A midterm written exam and a written final exam.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course is taught annually.
Teacher's information
http://www.fi.muni.cz/~popel/lectures/bak_logika/
The course is also listed under the following terms Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020.
  • Enrolment Statistics (Spring 2009, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2009/IB101