FI:IA008 Computational Logic - Course Information
IA008 Computational Logic
Faculty of InformaticsSpring 2025
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
In-person direct teaching - Teacher(s)
- Dr. rer. nat. Achim Blumensath (lecturer)
- Guaranteed by
- Dr. rer. nat. Achim Blumensath
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- some familiarity with basic notions from logic like: formula, model, satisfaction, logical equivalence.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 111 student(s).
Current registration and enrolment status: enrolled: 0/111, only registered: 46/111, only registered with preference (fields directly associated with the programme): 32/111 - fields of study / plans the course is directly associated with
- there are 33 fields of study the course is directly associated with, display
- Course objectives
- The course is about algorithmic problems related to logic. The focus is on model checking and satisfiability algorithms for several logics used in the various fields of computer science, for instance in verification or knowledge representation.
- Learning outcomes
- After successfully completing this course students should be familiar with several logics, including propositional logic, first-order logic, and modal logic. They should be familiar with various proof calculi for these logics and be able to use such calculi to test formulae for satisfiability and/or validity. In addition, they should have basic knowledge about automatic theorem provers and they way these work.
- Syllabus
- Resolution for propositional logic.
- Resolution for first-order logic.
- Prolog.
- Fundamentals of database theory.
- Tableaux proofs for first-oder logic.
- Natural deduction.
- Ehrenfeucht-Fraise games.
- Induction.
- Modal logic.
- Many-valued logics.
- Literature
- recommended literature
- ENDERTON, Herbert B. A mathematical introduction to logic. 2nd ed. San Diego: Harcourt/Academic press, 2001, xii, 317. ISBN 0122384520. info
- NERODE, Anil and Richard A. SHORE. Logic for applications. New York: Springer-Verlag, 1993, xvii, 365. ISBN 0387941290. info
- EBBINGHAUS, Heinz-Dieter, Jörg FLUM and Wolfgang THOMAS. Mathematical logic. Third edition. Cham: Springer, 2021, ix, 304. ISBN 9783030738389. info
- Teaching methods
- lectures, exercises.
- Assessment methods
- A final written exam.
- Language of instruction
- English
- Further Comments
- The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/spring2025/IA008