FI:IB101 Introduction to Logic - Course Information
IB101 Introduction to Logic
Faculty of InformaticsSpring 2019
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
RNDr. Karel Vaculík, Ph.D. (assistant)
Dr. rer. nat. Achim Blumensath (seminar tutor)
Mgr. Simona Katkinová (seminar tutor)
Mgr. Daniela Krúželová (seminar tutor)
Mgr. Jakub Lédl (seminar tutor)
Mgr. Henrieta Micheľová (seminar tutor)
Mgr. Markéta Naušová (seminar tutor)
Mgr. Bc. Roman Solař (seminar tutor)
Mgr. Lukáš Zaoral (seminar tutor)
RNDr. Aleš Zlámal (seminar tutor)
RNDr. Viktória Spišaková (assistant)
Mgr. Alena Zahradníčková (assistant) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Tue 19. 2. to Tue 14. 5. Tue 8:00–9:50 D1
- Timetable of Seminar Groups:
IB101/02: Wed 8:00–9:50 C525, M. Naušová
IB101/03: Thu 21. 2. to Thu 16. 5. Thu 8:00–9:50 C416, S. Katkinová
IB101/04: Wed 16:00–17:50 C511, L. Zaoral
IB101/05: Mon 14:00–15:50 C525, L. Zaoral
IB101/06: Wed 18:00–19:50 C511, L. Zaoral
IB101/07: Tue 19. 2. to Tue 14. 5. Tue 12:00–13:50 B410, H. Micheľová
IB101/08: Thu 21. 2. to Thu 16. 5. Thu 16:00–17:50 B410, H. Micheľová
IB101/09: Thu 21. 2. to Thu 16. 5. Thu 12:00–13:50 C416, S. Katkinová
IB101/10: Tue 19. 2. to Tue 14. 5. Tue 14:00–15:50 C525, R. Solař
IB101/11: Wed 14:00–15:50 C416, D. Krúželová
IB101/12: Fri 10:00–11:50 A318, A. Zlámal
IB101/13: Mon 8:00–9:50 B410, R. Solař
IB101/14: Fri 12:00–13:50 C511, M. Naušová
IB101/15: Fri 8:00–9:50 B410, R. Solař
IB101/16: Thu 21. 2. to Thu 16. 5. Thu 18:00–19:50 C525, J. Lédl - Prerequisites (in Czech)
- ( IB000 Math. Foundations of CS || IB112 Math Foundations ) && ! IA008 Computational Logic
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Bioinformatics (programme FI, B-AP)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Public Administration Informatics (programme FI, B-AP)
- Mathematical Informatics (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, B-IN)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Artificial Intelligence and Natural Language Processing (programme FI, B-IN)
- Course objectives
- This subject gives basics of thinking in logic. The goal of this subject is to give introduction to use of logic in computer science. At the end of the course students will be familiar with propositional and first-order logic.
- Learning outcomes
- At the end of the course students
- will be familiar with propositional and first-order logic, and capable to use them;
- know basics of deductive proofs;
- wiil be able to use different variants of resolution. - Syllabus
- This course is an introduction to propositional and predicate logic.
- Motivation, examples of the use of logic in computer science. Logic in mathematics.
- Propositional logic, logical conectives, logical consequence, truth tables.
- Natural language and formalization in propositional logic.
- Dokazatelnost, normální formy. Věty o dedukci, formulace a praktické využití.
- Základy teorie důkazů ve výrokové logice, axiomatické systémy, metoda Davise-Putnama, úvod do rezoluce.
- Predikátový počet 1. řádu, predikátové formule, sémantika, axiomy.
- Dokazatelnost. Normální formy predikátové logiky. Přirozený jazyk a formalizace v predikátové logice.
- Resolution in predicate calculus
- Úvod do výpočtové logiky. Použití logik v informatice. Formulace složitějších problémů pomocí logiky.
- Literature
- recommended literature
- DUŽÍ, Marie. Logika pro informatiky (a příbuzné obory) : učební text. 1. vyd. Ostrava: VŠB-TU Ostrava, 2012, 179 s. ISBN 9788024826622. info
- NERODE, Anil and Richard A. SHORE. Logic for applications. New York: Springer-Verlag, 1993, xvii, 365. ISBN 0387941290. info
- PRIEST, Graham. Logic : a very short introduction. 1st pub. Oxford: Oxford University Press, 2000, xii, 140. ISBN 9780192893208. info
- ŠTĚPÁN, Jan. Klasická logika. 1. vyd. Olomouc: Univerzita Palackého v Olomouci, 2001, 198 s. ISBN 8024402548. info
- Teaching methods
- Lectures, exercises.
- Assessment methods
- Homework questionairres and a written midterm exam and a written final exam.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/~popel/lectures/bak_logika/
- Enrolment Statistics (Spring 2019, recent)
- Permalink: https://is.muni.cz/course/fi/spring2019/IB101