LF:aVLBC0321s Biochemistry I - sem. - Course Information
aVLBC0321s Biochemistry I - seminar
Faculty of Medicineautumn 2020
- Extent and Intensity
- 0/2/0. 4 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. RNDr. Jiří Dostál, CSc. (seminar tutor)
RNDr. Hana Paulová, CSc. (seminar tutor)
Mgr. Jiří Slanina, Ph.D. (seminar tutor)
prof. RNDr. Eva Táborská, CSc. (seminar tutor)
doc. RNDr. Josef Tomandl, Ph.D. (seminar tutor)
MUDr. Miroslava Hlaváčová, Ph.D. (assistant)
MUDr. Michaela Králíková, Ph.D. (assistant)
Mgr. Marie Tomandlová, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Eva Táborská, CSc.
Department of Biochemistry – Theoretical Departments – Faculty of Medicine
Contact Person: Monika Šudáková
Supplier department: Department of Biochemistry – Theoretical Departments – Faculty of Medicine - Timetable of Seminar Groups
- aVLBC0321s/30: Tue 16:00–17:40 A16/215, J. Tomandl
aVLBC0321s/31: Tue 16:00–17:40 A16/215, J. Tomandl
aVLBC0321s/32: Tue 12:00–13:40 A16/213, E. Táborská
aVLBC0321s/33: Tue 12:00–13:40 A16/213, E. Táborská
aVLBC0321s/34: Tue 8:00–9:40 A16/213, H. Paulová
aVLBC0321s/35: Tue 8:00–9:40 A16/213, H. Paulová
aVLBC0321s/36: Tue 14:00–15:40 A16/215, J. Dostál
aVLBC0321s/37: Tue 14:00–15:40 A16/215, J. Dostál
aVLBC0321s/38: Mon 14:00–15:40 A16/215, J. Slanina
aVLBC0321s/39: Mon 14:00–15:40 A16/215, J. Slanina - Prerequisites (in Czech)
- aVLBI0222c Medical Biology II - pract. && aVLBF011c Biophysics - pract.
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- General Medicine (programme LF, M-GM)
- General Medicine (eng.) (programme LF, M-VL)
- General Medicine (programme LF, M-VL) (2)
- Course objectives
- Seminars (A) and practicals (B) have a common content. The aim of the course is to obtain knowledge on essential metabolic processes on the cellular level. Understanding of these proceses is a base for comprihension of metabolism on the tissue and organ level. Introductory lessons summarize the basic terms of chemistry needed for understanding of body structure a physico-chemical processes occuring in it (chemical composition of the body, biologically important elements, water, electrolytes, non-electrolytes, osmotic pressure, acid-base, redox and precipitation reactions), the following lectures are focused on biochemichal pathways in cells.
- Learning outcomes
- At the end of the course students will be competent to:
- understand the meaning of basic chemical terms (pH, osmolality, electrolyte, buffer, etc.) and apply this knowledge when describing the properties of body fluids.
- describe the role of macro/microbiogenic elements in the body.
- discusse the properties and function of enzymes
- describe basic catabolic and anabolic pathways of carbohydrates, lipids, and protein metabolism, and their relationships.
- understand the principles of energy production, utilization and deposition at the cellular level.
- explain the function of cell membranes and the principle of compartmentalization at the cellular level and the transport processes on the membrane.
- describe protein synthesis, starting with the replication and transcription, translation and post-translational modifications. Understand the relationship between protein structure and function.
- explain the function of hemoglobin in oxygen transport and maintaining acid-base balance.
- discusse the principles of some diseases at the molecular level. - Syllabus
- 1A: Introduction to biochemistry.
- 1B: Electrolytes, osmolality, tonicity, oncotic pressure, osmolal gap.
- 2A: Acid-base reactions, pH of body fluids.
- 2B: Buffers, Henderson-Hasselbalch equation.
- 3A: TEST 1 (sem 1A-2B). Biochemically important organic compounds I (alcohols, aldehydes).
- 3B: Biochemically important organic compounds II (carboxylic acids and derivatives).
- 4A: Bioenergetics, Gibbs energy, ATP, redox reactions.
- 4B: Enzymes, kinetics, saturation curve, inhibition.
- 5A: Cofactors of enzymes, relation to vitamins.
- 5B: Citrate cycle, respiratory chain.
- 6A: Saccharides, structures, nutrition, digestion. Transport of glucose into cells. Glycolysis.
- 6B: Metabolism of glycogen. Metabolism of fructose and galactose.
- 7A: TEST 2 (sem 3A-6B). Surfactants (types, physiological roles). Lipids (structures).
- 7B: Cell membranes, transport.
- 8A: Lipids in nutrition, digestion. Catabolism of fatty acids, ketone bodies.
- 8B: Desaturation of fatty acids. Cholesterol.
- 9A: Metabolism of bile acids, eicosanoids, phospholipids.
- 9B: Lipophilic vitamins, ROS. Lipoperoxidation.
- 10A: TEST 3 (sem 7A-9B). Amino acids, proteins, structure, properties.
- 10B: Hemoglobin, types, function, abnormal types.
- 11A: Digestion of proteins, general features of amino acid metabolism, synthesis of urea.
- 11B: Metabolism of amino acids I (catabolism, synthesis of non-essential AA, congenital disorders).
- 12A: Metabolism of amino acids II (conversions to special products, heme).
- 12B: TEST 4 (sem 10A-12A). Structure of bases, nucleosides, nucleotides, roles of nucleotides. Metabolism of purine and pyrimidine bases I.
- 13A: Metabolism of purine and pyrimidine bases II.
- 13B: DNA, RNA structure, replication, transcription.
- 14A: Protein synthesis. Post-translation modification, collagen synthesis. Credit test.
- 14B: Consultations, compensatory lessons.
- Literature
- required literature
- Seminar texts available in Information system
- Lecture files including lecture notes available in IS
- RODWELL, Victor W., David A. BENDER, Kathleen M. BOTHAM, Peter J. KENNELLY and P. Anthony WEIL. Harper's illustrated biochemistry. Thirty-first edition. New York: McGraw-Hill, 2018, x, 789. ISBN 9781260288421. info
- KOOLMAN, Jan and Klaus-Heinrich ROEHM. Color Atlas of Biochemistry. 3rd ed. Georg Thieme Verlag, 2013. ISBN 978-3-13-100373-7. info
- Teaching methods
- Course is based on group discusion to the given topics. The outlines of discusion are in the recommended textbook. Complementary materials are available in section Study materials.
- Assessment methods
- Full attendance in seminars is the principal condition. If any absence, it must be apologized through Department of Study Affairs up to five days. If apology is recorded in Information System, then student is allowed to make up the absence according to teacher's instructions. Four revision tests are written in seminars, semestral limit for credit is 42. If the semestral limit is not fulfilled, student must write the Credit test (limit 14/30). All absences must be made up before writing the credit test. One repetition of the Credit test is approved. Depending on epidemiological situation, assessment method may be altered. The current conditions will be posted in IS (Study materials – Course-related instructions).
- Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on the extent and intensity of the course: 30. - Listed among pre-requisites of other courses
- aVLBC0422c Biochemistry II - practice
aVLBC0321s && aVLFY0321c && aVLFY0321s - aVLBC0422p Biochemistry II - lecture
aVLBC0321s && aVLFY0321c && aVLFY0321s - aVLBC0422s Biochemistry II - seminar
aVLBC0321s && aVLFY0321c && aVLFY0321s - aVLBC0422t Biochemistry II Laboratory Medicine - seminar
aVLBC0321s && aVLFY0321c && aVLFY0321s - aVLTZ0631 Theoretical Bases of Clinical Medicine I - seminar
aVLFY0321c && aVLFY0321s && aVLBC0321s && aVLBC0321p && aVLBI0222p && aVLAN0222c && aVLAN0222s - aZC041 Handling chemical substances
avlbc0321s
- aVLBC0422c Biochemistry II - practice
- Enrolment Statistics (autumn 2020, recent)
- Permalink: https://is.muni.cz/course/med/autumn2020/aVLBC0321s