LF:ZLBI0222p Biology II-lect. - Course Information
ZLBI0222p Biology II - lecture
Faculty of Medicinespring 2019
- Extent and Intensity
- 1/0/0. 3 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Dvořák, CSc. (lecturer)
Ing. Lívia Eiselleová, Ph.D. (lecturer)
doc. Mgr. Lumír Krejčí, Ph.D. (lecturer)
RNDr. Pavel Krejčí, Ph.D. (lecturer)
Mgr. Vladimír Rotrekl, Ph.D. (lecturer)
prof. MUDr. Iva Slaninová, Ph.D. (lecturer)
prof. MUDr. David Šmajs, Ph.D. (lecturer)
Mgr. Stjepan Uldrijan, CSc. (lecturer)
Mgr. Kateřina Vopěnková, Ph.D. (lecturer)
Jana Růžičková (assistant) - Guaranteed by
- prof. Ing. Petr Dvořák, CSc.
Department of Biology – Theoretical Departments – Faculty of Medicine
Contact Person: Mgr. Kateřina Vopěnková, Ph.D.
Supplier department: Department of Biology – Theoretical Departments – Faculty of Medicine - Timetable
- Wed 9:00–9:50 B11/114
- Prerequisites
- ZLBI0121c Biology I - pract. && ZC011 Handling chemical substances
Knowledge of high-school biology and all previous lectures and practical classes of the subject are prerequisities for studying the course. Expected knowledge for each lecture is specified in the course syllabus. Literature recomended to study before each lecture is detailed in the interactive syllabus of the course. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Dentistry (eng.) (programme LF, M-ZL)
- Dentistry (programme LF, M-ZL) (2)
- Course objectives
- The main objectives of the course are:
- understanding the mechanisms of cancer development
- understanding the complex taking place during human embryonic development
- acquaintance with the basics of genomics, gene therapy and tissue engineering in current medicine - Learning outcomes
- After completing the course the student will be able to:
- explain the nature of cancers with regard to deregulation of cell division, DNA repair and cell death
- explain the effects of some therapies with emphasis on modern medicine (molecular therapies of cancer)
- explain the elementary processes taking place during development of a human body
- express the basic coherence between malfunction in these processes and developmental defects
- explain the basic principles of current methods used in gene therapy and cell therapies
- understand the significance of the human microbiome composition
- be knowledgeable in basic modern approaches to studying various diseases and to personalised medicine (genomics, bioinformatics) - Syllabus
- DNA damage and repair – from molecular mechanisms to clinical significance
- Introduction to cancer biology
- Oncogenes and oncoviruses in cancer transformation
- Tumour suppressor genes and their significance for diagnostics and therapy
- Paradigm of cancer stem cells and implications for anti-cancer therapies
- Gene therapy – targets and strategies of molecular therapies
- Stem cells and tissue engineering – prospects of regenerative medicine
- From a single cell to human I – introduction to developmental biology
- From a single cell to human II – molecular basis of mammalian development in health and disease
- Human genome, genomics and bioinformatics in current biomedicine
- Human microbiome
- Modern approaches in studying macromolecules and their use in current biomedicine
- Literature
- required literature
- ALBERTS, Bruce. Základy buněčné biologie : úvod do molekulární biologie buňky. Translated by Arnošt Kotyk. 2. vyd. Ústí nad Labem: Espero Publishing, 2004, xxvi, 630. ISBN 8090290620. info
- PRITCHARD, D. J. and Bruce R. KORF. Základy lékařské genetiky. první české vydání. Praha: Galén, 2007, 182 stran. ISBN 9788072624492. info
- not specified
- ALBERTS, Bruce. Essential cell biology. 4th edition. New York, N.Y.: Garland Science, 2014, xxiii, 726. ISBN 9780815344551. info
- Medical genetics at a glance. Edited by D. J. Pritchard - Bruce R. Korf. 3rd ed. Chichester, England: Wiley-Blackwell, 2013, 1 online r. ISBN 9781118689028. info
- Teaching methods
- lecture every week
- Assessment methods
- Lecture attendance is optional. The course of Biology II builds on knowledge gained from Biology I, and is completed with a written examination test taken on computers. The test contains questions based on the topics discussed in the lectures and practices of both semesters. The students are expected to be able to autonomously solve assigned problems and to derive the solutions using their own thinking – based on the theory discussed during both semesters and supplemented by the recommended reading. The test contains 60 questions in total; at least 30 points are needed to pass.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on the extent and intensity of the course: 15. - Listed among pre-requisites of other courses
- AMOLp Introduction into molecular biology and genetics - lecture
(!VSBI0222p) && (!VLBI0222p) && (!ZLBI0222p) && (!PřF:Bi1700) - VLMB011 Modern imaging and analytical methods in cellular biology
VLBI0222p || ZLBI0222p || PřF:Bi1700 || VSBI0222p - ZLBC0321p Biochemisty I - lecture
ZLLC011p && ZLBF0222p && ZLBI0222p - ZLBC0321s Biochemistry I - seminar
ZLLC011p && ZLBF0222p && ZLBI0222p - ZLBC0422c Biochemistry II - practice
(ZLBC0321s || ZLBC0221s) && ZLFY0321s && ZLBI0222p - ZLBC0422p Biochemistry II - lecture
ZLFY0321s && ZLBI0222p && (ZLBC0321s || ZLBC0221s) - ZLBC0422s Biochemistry II - seminar
(ZLBC0321s || ZLBC0221s) && ZLFY0321s && ZLBI0222p - ZLFY0321c Physiology I - practice
ZLBI0222p && ZLBF0222c && ZLBF0222p - ZLFY0321p Physiology I - lecture
ZLBI0222p && ZLBF0222c && ZLBF0222p
- AMOLp Introduction into molecular biology and genetics - lecture
- Teacher's information
- https://is.muni.cz/auth/el/1411/jaro2018/ZLBI0222p/index.qwarp
- Enrolment Statistics (spring 2019, recent)
- Permalink: https://is.muni.cz/course/med/spring2019/ZLBI0222p