BOMA0222c Mathematics II - practice

Faculty of Medicine
spring 2024
Extent and Intensity
0/2/0. 2 credit(s). Type of Completion: z (credit).
Teacher(s)
doc. RNDr. Lenka Přibylová, Ph.D. (seminar tutor)
Mgr. Jakub Záthurecký, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Lenka Přibylová, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: Lenka Herníková
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science
Timetable
Mon 19. 2. 12:00–13:40 M2,01021, Mon 26. 2. 12:00–13:40 M2,01021, Mon 4. 3. 12:00–13:40 M2,01021, Mon 11. 3. 12:00–13:40 M2,01021, Mon 18. 3. 12:00–13:40 M2,01021, Mon 25. 3. 12:00–13:40 M2,01021, Mon 8. 4. 12:00–13:40 M2,01021, Mon 15. 4. 12:00–13:40 M2,01021, Mon 22. 4. 12:00–13:40 M2,01021, Mon 29. 4. 12:00–13:40 M2,01021, Mon 6. 5. 12:00–13:40 M2,01021, Mon 13. 5. 12:00–13:40 M2,01021, Mon 20. 5. 12:00–13:40 M2,01021, Mon 27. 5. 12:00–13:40 M2,01021
Prerequisites
BOMA0121c Mathematics I-p
BOMA0121c
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
This course is practice to the lecture course BOMA0222p. At the end of the course students should be able to solve basic problems of differential and integral calculus of functions of one real variable and some parts of differential and integral calculus of functions of more than one variable.
Learning outcomes
This course is practice to the lecture course BOMA0222p. At the end of the course students should be able to solve basic problems of differential and integral calculus of functions of one real variable and some parts of differential and integral calculus of functions of more than one variable.
Syllabus
  • Differential calculus in one real variable. Derivative and its geometrical meaning. Extrems, inflex points, differential, l'Hospital's rule. Graphs of functions. Taylor polynomial. Integral calculus in one variable. Primitive function, basic formulas. Per partes and substitution methods. Riemann integral and its geometric applications. Infinite integral. Differential calculus in two real variables. Basic ideas, domain of definition, graph, limit and continuity. Partial derivatives, tangent plane and differential. Local extremes. Integral calculus in two real variables. Double integral, Fubini's theorem, transformation to polar coordinates. Geometric applications of double integrals.
Literature
  • PŘIBYLOVÁ, Lenka and Robert MAŘÍK. Matematika I. a II. Elportál. Brno: Masarykova univerzita, 2007. ISSN 1802-128X. URL info
  • http://www.math.muni.cz/~pribylova/prednaska.pdf
  • DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
  • NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vyd. 2. přeprac. Brno: Masarykova univerzita, 1999, iv, 143. ISBN 8021020520. info
  • SIKORSKI, Roman. Diferenciální a integrální počet : funkce více proměnných. Translated by Ilja Černý. 2., změn. a dopl. vyd., Vyd. Praha: Academia, 1973, 495 s. URL info
Teaching methods
practice
Assessment methods
written final test written test, at least 5 points from 10, max. 5 points can be obtained during the term at the course (method will be specified on the course)
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Information on the extent and intensity of the course: 30.
Listed among pre-requisites of other courses
Teacher's information
https://is.muni.cz/auth/elearning/warp?kod=BOMA0222p;predmet=1014550;qurl=%2Fel%2F1411%2Fjaro2018%2FBOMA0222p%2Findex.qwarp;zpet=%2Fauth%2Fel%2F1411%2Fjaro2018%2FBOMA0222p%2Findex.qwarp%3Finfo;zpet_text=Zp%C4%9Bt%20do%20Spr%C3%A1vce%20soubor%C5%AF
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, spring 2019, spring 2020, spring 2021, spring 2022, spring 2023, spring 2025.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/med/spring2024/BOMA0222c