PřF:C5920 Good Laboratory Practice - Course Information
C5920 Good Laboratory Practice
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 1/0/0. 1 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Luděk Bláha, Ph.D. (lecturer)
prof. RNDr. Jana Klánová, Ph.D. (lecturer) - Guaranteed by
- prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D. - Timetable
- Mon 13:00–14:50 kamenice
- Prerequisites
- Introductory course on Analytical Chemistry or an equivalent, basic knowledge in biology.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- Major objectives are to introduce students into the GLP as the major principle assuring quality of the analytical results both in chemistry and biology. Students will learn about goals of GLP, fundamental terms and standards. Students will be able to describe, discuss and interpret organization of laboratory and work conditions, laboratory accreditation and proficiency testing. Further, students will know how to conduct equipment validation, validation of analytical system. Students will be able to describe and apply fundamentals of good sampling practice including techniques for homogeneous and nonhomogeneous objects, design and evaluation of sampling plan with emphasis on environmental sampling. Students will further be able to discuss application of GLP in biology such as safety assessment of chemicals for humans and the environment, microbiology and biochemistry, GMO etc.
- Syllabus
- I. GLP principles and goals. Historical background, quality assurance and quality management. II. Key provisions. Organisation of laboratory, conditions. III. Laboratory accreditation. ČSN EN ISO/IEC 17025 Standard, terminology. IV. Proficiency testing. Methodics. V. Validation and testing. Validation of equipment, method, analytical system, and data. VI. Validation of analytical methods. VII. Estimation of performance characteristics. Documentation of an analytical method. VIII. Evaluation of results in respect to limit values. Control charts. IX. Principles of good sampling practice. Homogenous and heterogeneous objects, randomised and segregated objects. Sampling errors and sampling plan. X. Sampling techniques. Homogeneity test. Sampling of nonhomogenous objects. Assurance of sampling randomness. Systematic sampling of nonhomogenous materials. XI. Design and evaluation of a sampling plan. Evaluation of sampling precision and trueness. Documentation of sampling. XII. Environmental sampling.
- Literature
- CROSBY, N. T. and F. E. PRICHARD. Quality in the Analytical Laboratory. Chichester: J. Wiley, 1995. Analytical Chemistry by Open Learning (Series). ISBN 0 471 95470 5. info
- MESTEK, O. and L. NONDEK. Zásady správného odběru vzorků pro analýzu životního prostředí (Principles of Good Sampling Practice in Environmental Analysis). Praha: Eurachem - ČR, 1995. Kvalimetrie, 4. ISBN 80-901868-0-7. info
- Assessment methods
- lectures, weekly, written test, colloquium
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.recetox.muni.cz
- Enrolment Statistics (Autumn 2008, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2008/C5920