PřF:M9100 Num. methods solv.diff.eq. - Course Information
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 11:00–12:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations and basic principles of methods for solving partial differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- Methods for solving partial differential equations:
- 1.Finite-difference method, (convergence and stability of difference schemes).
- 2.Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
- Enrolment Statistics (Autumn 2009, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2009/M9100