PřF:M9100 Num.meth.solv.ord.diff.eqs. - Course Information
M9100 Numerical methods for solving ordinary differential equations
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Wed 14:00–15:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba znát základní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
- Enrolment Statistics (autumn 2017, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2017/M9100