PřF:C2200 Chemical synthesis - lab. - Course Information
C2200 Chemical synthesis - laboratory
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 0/0/8. 8 credit(s). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Slávka Janků, Ph.D. (seminar tutor)
Mgr. Jaromír Literák, Ph.D. (seminar tutor)
Mgr. Zdeněk Moravec, Ph.D. (seminar tutor)
Mgr. Aleš Stýskalík, Ph.D. (seminar tutor)
Mgr. Ondřej Czechaczek (assistant)
Mgr. Martin Kejík, Ph.D. (assistant)
Mgr. Petr Macháč, Ph.D. (assistant)
Mgr. Filip Smrčka, Ph.D. (assistant) - Guaranteed by
- RNDr. Slávka Janků, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science - Timetable of Seminar Groups
- C2200/01: Thu 8:00–15:50 C10/109, S. Janků, Z. Moravec
C2200/02: Thu 8:00–15:50 C10/109, S. Janků, Z. Moravec
C2200/03: Wed 11:00–18:50 C10/109, J. Literák, A. Stýskalík - Prerequisites
- ( C1100 Introductory Chemistry Lab || C1100b Laboratorní technika || C4221 Biochemical Lab Technique )&& C1020 General Chemistry && C1040 General Chemistry-sem.
Basic knowledge of general, inorganic and organic chemistry. Writing chemical equations, stoichiometric calculations, and calculations of solution concentration and mixing will be used extensively. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 120 student(s).
Current registration and enrolment status: enrolled: 0/120, only registered: 0/120, only registered with preference (fields directly associated with the programme): 0/120 - fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- The course “Chemical synthesis – laboratory“ represents an elementary laboratory course of preparatory chemistry in bachelor’s studies and aims for deepening and adopting fundamental as well as complementary techniques used in synthetic organic and inorganic chemistry (e.g. vacuum distillation, work under lowered temperatures, column chromatography, synthesis in waterless environment, …) including selected physico-chemical methods for identification of products (determining melting point and refractive index, gas chromatography, IR spectroscopy). Exercises are chosen carefully to cover the most common and important types of chemical reactions, which are discussed in lectures on inorganic and organic chemistry, allowing the students to apply their theoretical knowledge in practice.
- Learning outcomes
- By the end of this course, students:
- will have mastered elementary and complementary techniques commonly used in inorganic and organic synthesis.
- will be capable of handling laboratory equipment necessary for analysis of purity and identification of prepared solutions with ease (gas chromatograph, IR spectrometer, refractometer, melting point apparatus and others).
- will have built self-confidence and gained manual skillfulness essential for work in chemical laboratory.
- will be able to explain chemical nature of selected preparatory techniques. Exercises were chosen carefully to cover the most common and important types of chemical reactions, which are discussed in lectures on inorganic and organic chemistry, allowing the students to apply their theoretical knowledge in practice.
- will have learnt to report thoroughly on outcomes of their work and will have mastered basic chemical calculations needed for their laboratory praxis. - Syllabus
- 1. Introduction, safety rules, laboratory notebook, worked example of experiment calculations. Requirements for passing the course. Preparation of orthoboric acid and potassium hydrosulfate. 2. Preparation of bromoethane. Preparation of bezophenone oxime. 3. Preparation of ethylmagnesium bromide and its diastereoselective addition to benzoin. 4. Preparation of 3-nitroacetophenone. 5. Preparation of 3-aminoacetophenone and 1-(3-nitrophenyl)ethanol. 6. Preparation of ethyl 3-oxobutanoate ethylenacetal. 7. Preparation of azo dyes, column chromatography. 8. Preparation of metal acetylacetonate complexes. Thin-layer chromatography. 9. Preparation of potassium chlorate. Preparation of hexaaquacobalt(II) chloride. 10. Preparation of cobalt(III) coordination compounds. 11. Preparation of boric oxide and trimethyl borate. 12. Preparation of bismuth(III) oxide and bismuth. 13. Synthesis of ferrocene.
- Literature
- required literature
- LITERÁK, Jaromír, Slávka JANKŮ and Jiří PINKAS. Chemická syntéza - návody k praktiku (Chemical synthesis – practical training). 1. vydání. Brno: Masarykova univerzita, 2012, 139 pp. ISBN 978-80-210-5776-0. info
- recommended literature
- PŘÍHODA, Jiří, Miloš ČERNÍK, Slávka JANKŮ and Jaromír LITERÁK. Laboratorní technika. Příručka pro začínajícího chemika (Laboratory technique. Handbook for young chemist). 1. vydání. Brno: Masarykova univerzita, 2012, 221 pp. ISBN 978-80-210-5820-0. info
- KLIKORKA, Jiří. Úvod do preparativní anorganické chemie. 3. vyd. Praha: SNTL - Nakladatelství technické literatury, 1974, 373 s. info
- TANAKA, John and Steven L. SUIB. Experimental Methods in Inorganic Chemistry. New Jersey: Prentice Hall, 1999, 393 pp. ISBN 0-13-841909-4. info
- Teaching methods
- The education is realized as a laboratory course, which takes place once a week and the laboratory course covers basic laboratory operations, which are practised on the real anorganic and organic syntheses. In the end the students have to work out the laboratory reports.
- Assessment methods
- The course can also be completed outside the examination period. The course is taught annually. The course is taught: every week.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2019, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2019/C2200