PřF:M4170 Measure and Integral - Course Information
M4170 Measure and Integral
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Timetable of Seminar Groups
- M4170/01: No timetable has been entered into IS. L. Adamec
- Prerequisites (in Czech)
- M3100 Mathematical Analysis III
Diferenciální počet funkcí více proměnných. Metrické prostory. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The theory of measure and integration is nowadays a standard part of the basic course of mathematical analysis that is necessary for further successful study of modern mathematical analysis and its applications e.g. in the theory of differential equations or in the probability theory. In addition to the abstract theory of measure and abstract integration on measure spaces it contains the theory of Lebesgue integration in Rn and the integration of differential forms on k-dimensional submanifolds embedded in Rn.
- Syllabus
- 1) Fundamental concepts: Sigma-algebra, Borel set, measure, measurable sets
- 2) Constructions of measures: Outer measures.
- 3) Lebesgue measure in Rn: Outer Lebesgue measure in Rn, Lebesgue measurable sets.
- 4) Measurable functions.
- 5) The abstract Lebesgue integral.
- 6) The Lebesgue integral in Rn.
- 7) Fubini's theorem.
- 8) Change of variable theorem.
- 9) Integrals depending on a parameter.
- 10) Differential forms and submanifolds n Rn.
- 11) Surface and curve integrals.
- 12) Integration of differential forms, integration on submanifolds in Rn, Stokes theorem.
- Literature
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- RUDIN, Walter. Analýza v reálném a komplexním oboru. 1. vyd. Praha: Academia, 1977, 463 s. URL info
- SIKORSKI, Roman. Diferenciální a integrální počet : funkce více proměnných. Translated by Ilja Černý. 2., změn. a dopl. vyd., Vyd. Praha: Academia, 1973, 495 s. URL info
- Assessment methods (in Czech)
- Podoba závěrečného hodnocení:písemná zkouška následovaná ústní zkouškou
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
- Enrolment Statistics (Spring 2003, recent)
- Permalink: https://is.muni.cz/course/sci/spring2003/M4170