FI:MV011 Statistics I - Course Information
MV011 Statistics I
Faculty of InformaticsSpring 2003
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- RNDr. Marie Budíková, Dr. (lecturer)
Mgr. David Hampel, Ph.D. (seminar tutor)
Mgr. Lucie Hampelová, Ph.D. (seminar tutor)
RNDr. Štěpán Mikoláš (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Faculty of Informatics
Contact Person: RNDr. Marie Budíková, Dr. - Timetable
- Tue 10:00–11:50 D2
- Timetable of Seminar Groups:
MV011/02: Thu 17:00–17:50 A104, Thu 17:00–18:50 B003, L. Hampelová
MV011/03: Thu 7:00–8:50 A104, Thu 7:00–8:50 B007, D. Hampel
MV011/04: Mon 9:00–10:50 A104, Mon 9:00–10:50 B204, Š. Mikoláš
MV011/05: Mon 11:00–12:50 A104, Mon 11:00–12:50 B204, Š. Mikoláš - Prerequisites (in Czech)
- ! M011 Statistics I
Předpokládá se znalost diferenciálního a integrálního počtu jedné a více proměnných a znalost lineární algebry. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS)
- Course objectives
- Data files, empirical characteristics and graphs, numerical characteristics.
Probability space, property of probability, conditional probability, stochastic independence of events.
Random variables and vectors, functional and numerical characteristics.
Weak law of large number and central limit theorem. - Syllabus
- Data files, empirical characteristics and graphs, numerical characteristics.
- Probability space, property of probability, conditional probability, Bayes' theorem, stochastic independence of events.
- Construction of classical probability and of probability distributions using probability function and density.
- Random variables and vectors. Probability distribution and distribution function.
- Discrete and continuous random variables and vectors. Typical distribution laws. Simultaneous and marginal distributions.
- Stochastic independence of random variables and vectors. The sequence of independent trials.
- Quantiles, expectation, variance, covariance, correlation coeficient and their properties.
- Weak law of large number and central limit theorem.
- Literature
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika : sbírka příkladů. 2. vyd. Brno: Masarykova univerzita v Brně, 1998, viii, 116. ISBN 8021018321. info
- OSECKÝ, Pavel. Statistické vzorce a věty. 1. vyd. Brno: Masarykova univerzita, 1998, [29] list. ISBN 8021017589. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Assessment methods (in Czech)
- Výuka probíhá každý týden v rozsahu 2 hodiny přednášek, 2 hodiny cvičení. Nutnou podmínkou zápočtu je vypracování zápočtového příkladu. Zkouška je písemná, obsahuje část testovou a část s příklady.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Enrolment Statistics (Spring 2003, recent)
- Permalink: https://is.muni.cz/course/fi/spring2003/MV011