FI:MV011 Statistics I - Course Information
MV011 Statistics I
Faculty of InformaticsSpring 2013
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- Mgr. Martin Řezáč, Ph.D. (lecturer)
Mgr. Eva Janoušková, Ph.D. (seminar tutor)
Mgr. Michal Theuer, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Faculty of Informatics
Contact Person: Mgr. Martin Řezáč, Ph.D.
Supplier department: Faculty of Science - Timetable
- Mon 10:00–11:50 G101
- Timetable of Seminar Groups:
MV011/01: Wed 12:00–13:50 G124, E. Janoušková
MV011/02: Wed 14:00–15:50 G124, E. Janoušková
MV011/03: Tue 8:00–9:50 G125, M. Theuer
MV011/04: Tue 10:00–11:50 G125, M. Theuer - Prerequisites (in Czech)
- Předpokládá se znalost diferenciálního a integrálního počtu jedné a více proměnných a znalost lineární algebry.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- Upon completing this course, students will be able to perform basic computer aided statistical data set analysis, resulting in tables, graphs and numerical characteristics; will understand basic probability concepts; will be able to solve probability tasks related to explained theory (in some cases using statistical software); will be able to generate realizations of selected types random variables using statistical software.
- Syllabus
- Data files, empirical characteristics and graphs, numerical characteristics.
- Probability space, property of probability, conditional probability, Bayes' theorem, stochastic independence of events.
- Construction of classical probability and of probability distributions using probability function and density.
- Random variables and vectors. Probability distribution and distribution function.
- Discrete and continuous random variables and vectors. Typical distribution laws. Simultaneous and marginal distributions.
- Stochastic independence of random variables and vectors. The sequence of independent trials.
- Quantiles, expectation, variance, covariance, correlation coeficient and their properties.
- Weak law of large number and central limit theorem.
- Literature
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 3rd ed. Brno: Masarykova univerzita, 2004, 127 pp. ISBN 80-210-3313-4. info
- OSECKÝ, Pavel. Statistické vzorce a věty. 1. vyd. Brno: Masarykova univerzita, 1998, [29] list. ISBN 8021017589. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Teaching methods
- Lectures, Exercises
- Assessment methods
- The weekly class schedule consists of 2 hour lecture and 2 hours of class exercises. Throughout semester, students elaborate a semester project and write a test. The examination is written, consisting of test part and exercises part.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2013, recent)
- Permalink: https://is.muni.cz/course/fi/spring2013/MV011