MA009 Algebra II

Fakulta informatiky
jaro 2018
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučující
doc. Mgr. Michal Kunc, Ph.D. (přednášející)
doc. Mgr. Ondřej Klíma, Ph.D. (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Pá 8:00–9:50 A320
  • Rozvrh seminárních/paralelních skupin:
MA009/01: Pá 10:00–11:50 A320, M. Kunc
Předpoklady
( MB008 Algebra I || MV008 Algebra I ||PROGRAM(N-IN)||PROGRAM(N-AP)||PROGRAM(N-SS))
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Po absolvování tohoto kurzu budou studenti schopni: používat základní pojmy teorie svazů a univerzální algebry; definovat a chápat základní vlastnosti svazů a úplných svazů; dokazovat jednoduchá algebraická tvrzení; aplikovat teoretické výsledky při algoritmickém počítání s operacemi a termy.
Výstupy z učení
Po absolvování tohoto kurzu budou studenti schopni: používat základní pojmy teorie svazů a univerzální algebry; definovat a chápat základní vlastnosti svazů a úplných svazů; dokazovat jednoduchá algebraická tvrzení; aplikovat teoretické výsledky při algoritmickém počítání s operacemi a termy.
Osnova
  • Teorie svazů: polosvazy, svazy, homomorfismy svazů, modulární a distributivní svazy, Booleovy algebry, úplné svazy, věty o pevném bodě, uzávěrové operátory, zúplnění uspořádaných množin, Galoisovy korespondence, algebraické svazy.
  • Univerzální algebra: algebry, podalgebry, homomorfismy, algebry termů, kongruence, faktorové algebry, přímé součiny, podpřímé součiny, identity, variety, volné algebry, prezentace, Birkhoffova věta, věta o úplnosti pro rovnostní logiku, algebraické specifikace, přepisovací systémy.
Literatura
  • BURRIS, Stanley N. a H. P. SANKAPPANAVAR. A course in universal algebra. New York: Springer-Verlag, 1981, 276 s. ISBN 0387905782. info
  • PROCHÁZKA, Ladislav. Algebra. 1. vyd. Praha: Academia, 1990, 560 s. info
  • BICAN, Ladislav a Jiří ROSICKÝ. Teorie svazů a univerzální algebra. Vyd. 1. Praha: Ministerstvo školství, mládeže a tělovýchovy ČSR, 1989, 84 s. info
Výukové metody
Přednášky: teoretická výuka. Cvičení: řešení konkrétních problémů s cílem porozumět základním pojmům a tvrzením.
Metody hodnocení
Zkouška písemná (požadováno alespoň 50% bodů) a ústní.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2022, jaro 2024.