FI:MA010 Graph Theory - Informace o předmětu
MA010 Graph Theory
Fakulta informatikypodzim 2017
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- prof. RNDr. Petr Hliněný, Ph.D. (přednášející)
doc. RNDr. Jan Bouda, Ph.D. (cvičící)
Bodhayan Roy, Ph.D. (cvičící)
Onur Cagirici, M.Sc., Ph.D. (pomocník)
Siddharth Karumanchi, PhD (pomocník)
doc. Mgr. Jan Obdržálek, PhD. (pomocník) - Garance
- prof. RNDr. Mojmír Křetínský, CSc.
Katedra teorie programování – Fakulta informatiky
Kontaktní osoba: prof. RNDr. Petr Hliněný, Ph.D.
Dodavatelské pracoviště: Katedra teorie programování – Fakulta informatiky - Rozvrh
- St 14:00–15:50 D3
- Rozvrh seminárních/paralelních skupin:
MA010/02: každé liché pondělí 12:00–13:50 C525, B. Roy
MA010/03: každé sudé úterý 14:00–15:50 A218, J. Bouda
MA010/04: každé liché úterý 14:00–15:50 A218, J. Bouda
MA010/05: každý sudý čtvrtek 12:00–13:50 C511, J. Bouda
MA010/06: každý lichý čtvrtek 12:00–13:50 C511, J. Bouda
MA010/07x: každé sudé pondělí 8:00–9:50 A319
MA010/08x: každé liché pondělí 8:00–9:50 A319 - Předpoklady
- ! PřF:M5140 Teorie grafů &&!NOW( PřF:M5140 Teorie grafů )
Discrete mathematics, basic concepts of graphs and of graph algorithms. IB000 (or equivalent from other schools) is highly recommended. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
Předmět si smí zapsat nejvýše 200 stud.
Momentální stav registrace a zápisu: zapsáno: 1/200, pouze zareg.: 0/200, pouze zareg. s předností (mateřské obory): 0/200 - Mateřské obory/plány
- předmět má 24 mateřských oborů, zobrazit
- Cíle předmětu
- This is a standard course in graph theory, assuming little introductory knowledge of graphs. It aim is to present all usual basic concepts of graph theory, graph properties (with simplified proofs) and formulations of typical graph problems. This is also supplemented with some abstract-level algorithms for the presented problems, and with some advanced graph theory topics. Although the content of this course is primarily targeted at CS students, it is accessible also to others.
- Výstupy z učení
- At the end of the course, successful students shall understand in depth and tell all the basic terms of graph theory; be able to reproduce the proofs of some fundamental statements on graphs; be able to solve new graph problems; and be ready to apply this knowledge in (especially) computer science applications.
- Osnova
- Graphs and relations. Subgraphs, isomorphism, degrees. Directed graphs.
- Graph connectivity and searching, multiple connectivity. Trees, the MST problem.
- Distance in graphs, graph metrics, concepts of route planning in graphs.
- Network flows. The "max-flow min-cut" theorem via Ford-Fulkerson's algorithm. Applications to connectivity and representatives.
- Matching in graphs, packing problems, enumeration.
- Graph colouring, properties, easy and hard cases. Edge and list colourings.
- Drawings and planar graphs, duality, Euler's formula and its applications.
- Computationally hard graph problems on graphs, how to tell "difficulty" of a graph problem.
- Selected advanced topics (time allowing): Intersection graph representations, chordal graphs, structural width measures, graph minors, graph embeddings on surfaces, crossing number, Ramsey theory.
- Literatura
- povinná literatura
- DIESTEL, Reinhard. Graph theory. 3rd ed. Berlin: Springer, 2006, xvi, 410s. ISBN 3540261834. info
- doporučená literatura
- http://diestel-graph-theory.com/
- HLINĚNÝ, Petr. Základy teorie grafů. Elportál. Brno: Masarykova univerzita, 2010. ISSN 1802-128X. URL info
- MATOUŠEK, Jiří a Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. 3., upr. a dopl. vyd. V Praze: Karolinum, 2007, 423 s. ISBN 9788024614113. info
- Výukové metody
- MA010 is taught in weekly 2-hour lectures, with bi-weekly 2-hour compulsory tutorials. Since this is a mathematical subject, the students are expected to learn the given theory and be able to understand and compose mathematical proofs. Memorizing is not enough! All the study materials, demonstrations, and study agenda are presented through the online IS syllabus.
- Metody hodnocení
- The resulting grade is taken from a semester test (20%), semester homework assignment (20%), optional bonus work (arbitrary), and a final written exam (60%). The written semester test can be repeated (corrected) once, and the homework assignment can also be rewritten once within the given limits. At least 20% points semester score is strictly required before attending the final exam. Possible bonus points and penalties for not attending the compulsory tutorials count towards this limit. The final written exam for 60% of points consists of a part testing basic graph notions and their applications, and an advanced part in which students have to come with solutions and proofs of rather difficult problems. More then 50% points in total is required to pass.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- Detailed information regarding course curriculum and examination can be found in the online syllabus MA010 in IS; "https://is.muni.cz/auth/el/1433/podzim20**/MA010/index.qwarp".
All students are required to frequently read course news at "https://is.muni.cz/auth/df/aktuma010/".
Since 2016, grading of MA010 changes by including a written homework assignment worth 20% and decreasing the weight of the final exam to 60%.
Since 2009, MA010 is taught in English. Předmět MA010 je od roku 2009 vyučován primárně anglicky. Informace v angličtině mají přednost, české materiály jsou doplňkové. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (podzim 2017, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2017/MA010