FI:MA018 Numerical Methods - Informace o předmětu
MA018 Numerical Methods
Fakulta informatikypodzim 2017
- Rozsah
- 2/2/0. 4 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- Mgr. Jiří Zelinka, Dr. (přednášející)
- Garance
- prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 A320
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Differential calculus of functions of one and more variables. Basic knoledge of linear algebra-theory of matrices and solving systems of linear equations.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 16 mateřských oborů, zobrazit
- Cíle předmětu
- This course together with the course Numerical Methods II provides complete explanation of numerical mathematics as the separate scientific discipline. The emphasis is given to the algorithmization and computer implementation. Some examples with graphical outputs help to explain even some difficult parts. At the end of course students should be able to apply numerical methods for solving practical problems and use these methods in other disciplines e.g. in statistical methods.
- Osnova
- 1. Error analysis: absolute and relative error, representation of numbers, error propagation 2. Iterative methods for solving of nonlinear equations: general iterative method, order of the convergence, Newton method and its modifications 3. Direct methods for solving systems of linear equations: methods based on Gaussian elimination, methods for special matrices 4. Iterative methods for solving of systems of linear equations: general construction of iterative methods, Jacobi method, Gauss-Seidel method 5. Solving of systems of nonlinear equations: Newton method 6. Interpolation and approximation: polynomial and piece-wise polynomial interpolation, curve approximations, subdivision schemes, least squares method 7. Numerical differentiation: differentiation schemes 8. Numerical integration: methods based on interpolation, Monte Carlo integration
- Výukové metody
- Lecture: 2 hours weeky, theoretical preparation. Class excercise: 2 hours weekly, Theoretical exercise (1 hour)is focused on solving of problems by methods presented in the lecture, practical exercise (1 hour) in a computer room is aimed at algoritmization and programming of presented numerical methods.
- Metody hodnocení
- Written exam and work during the semester - 30 points together.
Assessment of the course:
more then 27 points - A
more then 24 points - B
more then 21 points - C
more then 18 points - D
15 points and more - E
less then 15 points - F - Vyučovací jazyk
- Angličtina
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2017, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2017/MA018