FI:MA018 Numerical Methods - Informace o předmětu
MA018 Numerical Methods
Fakulta informatikypodzim 2019
- Rozsah
- 2/2/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- Mgr. Jiří Zelinka, Dr. (přednášející)
RNDr. Veronika Eclerová, Ph.D. (cvičící) - Garance
- Mgr. Jiří Zelinka, Dr.
Katedra teorie programování – Fakulta informatiky
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 8:00–9:50 A217
- Rozvrh seminárních/paralelních skupin:
MA018/02: Čt 8:00–9:50 A215, J. Zelinka
MA018/03: Pá 12:00–13:50 A215, V. Eclerová
MA018/04: Pá 10:00–11:50 A215, V. Eclerová - Předpoklady
- Differential calculus of functions of one and more variables. Basic knoledge of linear algebra-theory of matrices and solving systems of linear equations.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 18 mateřských oborů, zobrazit
- Cíle předmětu
- This course provides complete explanation of numerical mathematics as the separate scientific discipline. The emphasis is given to the algorithmization and computer implementation. Some examples with graphical outputs help to explain even some difficult parts.
- Výstupy z učení
- At the end of course students should be able to apply numerical methods for solving practical problems and use these methods in other disciplines.
- Osnova
- 1. Error analysis: absolute and relative error, representation of numbers, error propagation
- 2. Iterative methods for solving of nonlinear equations: general iterative method, order of the convergence, Newton method and its modifications
- 3. Direct methods for solving systems of linear equations: methods based on Gaussian elimination, methods for special matrices
- 4. Iterative methods for solving of systems of linear equations: general construction of iterative methods, Jacobi method, Gauss-Seidel method
- 5. Solving of systems of nonlinear equations: Newton method
- 6. Interpolation and approximation: polynomial and piece-wise polynomial interpolation, curve approximations, subdivision schemes, least squares method
- 7. Numerical differentiation: differentiation schemes
- 8. Numerical integration: methods based on interpolation, Monte Carlo integration
- Literatura
- doporučená literatura
- NOCEDAL, Jorge a Stephen J. WRIGHT. Numerical optimization. 2nd ed. New York: Springer, 2006, xxii, 664. ISBN 1493937111. info
- MATHEWS, John H. a Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. a J. Douglas FAIRES. Numerical analysis. 6th ed. Pacific Grove, Calif.: Brooks/Cole, 1997, xiii, 811. ISBN 0534955320. info
- STOER, J. a R. BULIRSCH. Introduction to numerical analysis. 1. vyd. New York - Heidelberg - Berlin: Springer-Verlag, 1980, 609 s. IX. ISBN 0-387-90420-4. info
- Výukové metody
- Lectures: 2 hours weeky - theoretical preparation, 2 hours weekly - class excercise.
Theoretical exercise (1 hour) is focused on solving of problems by methods presented in the lecture, practical exercise (1 hour) in a computer room is aimed at algoritmization and programming of presented numerical methods. - Metody hodnocení
- Written exam and work during the semester - 30 points together.
Assessment of the course:
27 points and more - A
24 points and more - B
21 points and more - C
18 points and more - D
15 points and more - E
less then 15 points - F
During the exam students are allowed to use computers and any study materials. - Vyučovací jazyk
- Angličtina
- Další komentáře
- Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2019, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2019/MA018