BOMA0121p Matematika I - přednáška

Lékařská fakulta
podzim 2020
Rozsah
2/0/0. 30. 0 kr. Ukončení: -.
Vyučující
RNDr. Veronika Eclerová, Ph.D. (přednášející)
doc. RNDr. Lenka Přibylová, Ph.D. (přednášející)
Garance
doc. RNDr. Lenka Přibylová, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: Lenka Herníková
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 13:00–14:40 M2,01021
Předpoklady
bez předpokladů
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
Cíle předmětu
Na konci tohoto kurzu bude student schopen porozumět základním pojmům a teorii vektorové a lineární algebry, analytické geometrie lineárních a kvadratických útvarů v R^2 a R^3 a úvodu do základů diferenciálního počtu funkcí jedné reálné proměnné. K přednášce patří cvičení BOMA0121c.
Výstupy z učení
Na konci tohoto kurzu bude student schopen:
- porozumět základním pojmům a teorii vektorové a lineární algebry, analytické geometrie lineárních a kvadratických útvarů v R^2 a R^3 a úvodu do základů diferenciálního počtu funkcí jedné reálné proměnné.
Osnova
  • Prohloubení středoškolské látky. Základy matematické logiky a teorie množin, číselné množiny. Funkce, složená funkce, vlastnosti funkcí, inverzní funkce. Vlastnosti elementárních funkcí. Komplexní čísla a operace s nimi, algebraický a goniometrický tvar, Moivreova věta. Polynomy, kanonický rozklad, Hornerovo schema. Rozklad racionální funkce lomené na parciální zlomky. Lineární algebra. Vektory, závislost vektorů. Matice a operace s nimi, hodnost matice, inverzní matice. Determinanty, Sarrusovo pravidlo, Laplaceova věta. Soustavy lineárních rovnic, Frobeniova věta, Gaussova metoda, Cramerovo pravidlo. Analytická geometrie: přímky a kuželosečky, lineární a kvadratické útvary v prostoru. Diferenciální počet funkcí jedné reálné proměnné: základní pojmy, limita a spojitost.
Literatura
  • https://is.muni.cz/auth/elportal/?id=714697
Výukové metody
přednášky
Metody hodnocení
bez ukončení
Navazující předměty
Informace učitele
https://is.muni.cz/auth/elearning/warp?kod=BOMA0121p;predmet=966085;qurl=%2Fel%2F1411%2Fpodzim2017%2FBOMA0121p%2Findex.qwarp;zpet=%2Fauth%2Fel%2F1411%2Fpodzim2017%2FBOMA0121p%2Findex.qwarp%3Finfo;zpet_text=Zp%C4%9Bt%20do%20Spr%C3%A1vce%20soubor%C5%AF
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2000, podzim 2001, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2021, podzim 2022, podzim 2023, podzim 2024.