M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2025
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně - Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Jan Ševčík (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Výstupy z učení
- Na konci tohoto kurzu bude student ovládat základní principy centrální limitní věty a aplikovat je v praktických případech; umět konstruovat některé typy bodových odhadů a poznat jejich statistické vlastnosti; konstruovat intervalové odhady; testovat základní statistické hypotézy.
- Osnova
- Charakteristiky: kovariance, momenty a jejich vlastnosti; varianční a korelační matice; charakteristická funkce náhodné veličiny a náhodného vektoru, momentová vytvořující funkce, generující funkce. Limitní věty: Borelova a Cantelliho věta, Čebyševova nerovnost, zákony velkých čísel, centrální limitní věta. Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení. Koncept Monte Carlo simulací, permutační metody a bootstrap testy.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktivní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2024
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Jan Ševčík (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 19. 2. až Ne 26. 5. Po 12:00–13:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 19. 2. až Ne 26. 5. Po 16:00–17:50 M6,01011, J. Ševčík
M4122/03: Po 19. 2. až Ne 26. 5. Po 14:00–15:50 M6,01011, J. Ševčík - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Výstupy z učení
- Na konci tohoto kurzu bude student ovládat základní principy centrální limitní věty a aplikovat je v praktických případech; umět konstruovat některé typy bodových odhadů a poznat jejich statistické vlastnosti; konstruovat intervalové odhady; testovat základní statistické hypotézy.
- Osnova
- Charakteristiky: kovariance, momenty a jejich vlastnosti; varianční a korelační matice; charakteristická funkce náhodné veličiny a náhodného vektoru. Limitní věty: Borelova a Cantelliho věta, Čebyševova nerovnost, zákony velkých čísel, centrální limitní věta. Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktivní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2023
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Jan Ševčík (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 14:00–15:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Út 10:00–11:50 M2,01021, J. Ševčík
M4122/03: Po 16:00–17:50 M6,01011, J. Ševčík - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Výstupy z učení
- Na konci tohoto kurzu bude student ovládat základní principy centrální limitní věty a aplikovat je v praktických případech; umět konstruovat některé typy bodových odhadů a poznat jejich statistické vlastnosti; konstruovat intervalové odhady; testovat základní statistické hypotézy.
- Osnova
- Charakteristiky: kovariance, momenty a jejich vlastnosti; varianční a korelační matice; charakteristická funkce náhodné veličiny a náhodného vektoru. Limitní věty: Borelova a Cantelliho věta, Čebyševova nerovnost, zákony velkých čísel, centrální limitní věta. Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktivní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2022
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Jan Ševčík (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 16:00–17:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 8:00–9:50 M1,01017, J. Ševčík
M4122/03: Čt 8:00–9:50 M4,01024, J. Ševčík - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Výstupy z učení
- Na konci tohoto kurzu bude student ovládat základní principy centrální limitní věty a aplikovat je v praktických případech; umět konstruovat některé typy bodových odhadů a poznat jejich statistické vlastnosti; konstruovat intervalové odhady; testovat základní statistické hypotézy.
- Osnova
- Charakteristiky: kovariance, momenty a jejich vlastnosti; varianční a korelační matice; charakteristická funkce náhodné veličiny a náhodného vektoru. Limitní věty: Borelova a Cantelliho věta, Čebyševova nerovnost, zákony velkých čísel, centrální limitní věta. Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktivní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2021
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Marie Budíková, Dr. (cvičící)
Mgr. Jakub Záthurecký, Ph.D. (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 1. 3. až Pá 14. 5. Po 12:00–13:50 online_A
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 1. 3. až Pá 14. 5. St 10:00–11:50 online_M2, M. Budíková
M4122/03: Po 1. 3. až Pá 14. 5. Čt 18:00–19:50 online_M1, J. Záthurecký - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Výstupy z učení
- Na konci tohoto kurzu bude student ovládat základní principy centrální limitní věty a aplikovat je v praktických případech; umět konstruovat některé typy bodových odhadů a poznat jejich statistické vlastnosti; konstruovat intervalové odhady; testovat základní statistické hypotézy.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktivní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2020
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Radim Navrátil, Ph.D. (cvičící)
Mgr. Ondřej Pokora, Ph.D. (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 16:00–17:50 M4,01024, O. Pokora - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Výstupy z učení
- Na konci tohoto kurzu bude student ovládat základní principy centrální limitní věty a aplikovat je v praktických případech; umět konstruovat některé typy bodových odhadů a poznat jejich statistické vlastnosti; konstruovat intervalové odhady; testovat základní statistické hypotézy.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktivní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2019
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Radim Navrátil, Ph.D. (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 18. 2. až Pá 17. 5. St 8:00–9:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 18. 2. až Pá 17. 5. St 10:00–11:50 M1,01017, R. Navrátil - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktívní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2018
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Radim Navrátil, Ph.D. (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: St 10:00–11:50 M4,01024, R. Navrátil - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktívní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2017
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Radim Navrátil, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 20. 2. až Po 22. 5. Po 12:00–13:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 20. 2. až Po 22. 5. Čt 12:00–13:50 M3,01023, R. Navrátil
M4122/03: Po 20. 2. až Po 22. 5. Po 10:00–11:50 M2,01021, J. Koláček - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktívní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2016
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Radim Navrátil, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 16:00–17:50 M1,01017, R. Navrátil
M4122/03: Po 10:00–11:50 M3,01023, R. Navrátil - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktívní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2015
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
RNDr. Radim Navrátil, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 18:00–19:50 M1,01017, R. Navrátil
M4122/03: St 16:00–17:50 M1,01017, R. Navrátil - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-EXB)
- Matematika - ekonomie (program PřF, M-AM)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktívní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2014
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Dagmar Lajdová (cvičící)
Mgr. Ondřej Pokora, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 10:00–11:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: St 14:00–15:50 M5,01013, O. Pokora
M4122/03: Út 16:00–17:50 M1,01017, D. Lajdová
M4122/04: Út 18:00–19:50 M1,01017, D. Lajdová - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-EXB)
- Matematika - ekonomie (program PřF, M-AM)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení úloh jednoduchých i úloh komplexního charakteru
- Metody hodnocení
- Přednáška s cvičením. Aktívní práce na cvičeních. Dvě písemné práce během semestru. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 8 teoretických otázek, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 72 - 80 bodů B: 63 - 71 bodů C: 54 - 62 bodů D: 45 - 53 bodů E: 36 - 44 bodů F: 0 - 35 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2013
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Dagmar Lajdová (cvičící)
Mgr. Ondřej Pokora, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 14:00–15:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: Út 16:00–17:50 M2,01021, D. Lajdová
M4122/03: Út 18:00–19:50 M2,01021, D. Lajdová
M4122/04: Po 12:00–13:50 M2,01021, O. Pokora - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-EXB)
- Matematika - ekonomie (program PřF, M-AM)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řiešení úloh jednoduchých i úloh komplexního charakteru, domácí úlohy
- Metody hodnocení
- Přednáška s cvičením. Aktívní práca na cvičeních. Dvě písemné práce počas semestra. Skúška písomní i ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2012
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Jakub Čupera, Ph.D. (cvičící)
Mgr. Lenka Zavadilová, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 14:00–15:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M4122/02: St 16:00–17:50 M5,01013, J. Čupera
M4122/03: Čt 12:00–13:50 M2,01021, L. Zavadilová
M4122/04: St 18:00–19:50 M5,01013, J. Čupera
M4122/05: St 16:00–17:50 M4,01024, J. Koláček - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-BI)
- Matematická biologie (program PřF, B-EXB)
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řiešení úloh jednoduchých i úloh komplexního charakteru, domácí úlohy
- Metody hodnocení
- Přednáška s cvičením. Aktívní práca na cvičeních. Jedna písemná práce počas semestra. Skúška písomní i ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2011
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- RNDr. Marie Forbelská, Ph.D. (přednášející)
Mgr. Jakub Čupera, Ph.D. (cvičící)
Mgr. Lenka Zavadilová, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 16:00–17:50 M1,01017, L. Zavadilová
M4122/03: Čt 16:00–17:50 M2,01021, J. Čupera
M4122/04: Čt 12:00–13:50 M4,01024, J. Čupera - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-BI)
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řiešení úloh jednoduchých i úloh komplexního charakteru, domácí úlohy
- Metody hodnocení
- Přednáška s cvičením. Aktívní práca na cvičeních. Dvě písemné práce počas semestra. Skúška písomní i ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2010
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Gejza Wimmer, DrSc. (přednášející)
Mgr. Jakub Čupera, Ph.D. (cvičící)
Mgr. Lenka Zavadilová, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 11:00–12:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 18:00–19:50 M4,01024, L. Zavadilová
M4122/03: St 14:00–15:50 M4,01024, L. Zavadilová - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-BI)
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řiešení úloh jednoduchých i úloh komplexního charakteru, domácí úlohy
- Metody hodnocení
- Přednáška s cvičením. Aktívní práca na cvičeních. Dvě písemné práce počas semestra. Skúška písomní i ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2009
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Marie Forbelská, Ph.D. (přednášející)
doc. Mgr. Kamila Hasilová, Ph.D. (cvičící)
Mgr. Jitka Kühnová, Ph.D. (cvičící) - Garance
- prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 13:00–14:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 18:00–19:50 M5,01013, K. Hasilová
M4122/03: St 12:00–13:50 M2,01021, J. Kühnová - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2008
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Gejza Wimmer, DrSc. (přednášející)
Mgr. Pavla Krajíčková, Ph.D. (cvičící)
RNDr. Tomáš Pavlík, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 12:00–13:50 N21
- Rozvrh seminárních/paralelních skupin:
M4122/02: St 18:00–19:50 UP2, T. Pavlík
M4122/03: Pá 12:00–13:50 UP2, T. Pavlík - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2007
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Marie Forbelská, Ph.D. (přednášející)
doc. Mgr. Kamila Hasilová, Ph.D. (cvičící)
RNDr. Tomáš Pavlík, Ph.D. (cvičící)
Mgr. Jaroslava Sidorová (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Skula, DrSc. - Rozvrh
- Pá 12:00–13:50 N21
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 14:00–15:50 UP2, K. Hasilová
M4122/03: Po 12:00–13:50 UP2, T. Pavlík - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, postačující statistika, Raova-Blackwellova věta, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda, bayesovské odhady, metoda chi^2 minima ); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma, testy poměrem věrohodností; testy o parametrech normálního rozdělení, testy založené na centrální limitní větě, testy dobré shody.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2006
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Skula, DrSc. (přednášející)
RNDr. Marie Forbelská, Ph.D. (cvičící)
doc. Mgr. Jan Koláček, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Skula, DrSc. - Rozvrh
- Čt 15:00–16:50 N21
- Rozvrh seminárních/paralelních skupin:
M4122/02: Po 18:00–19:50 M3,04005 - dříve Janáčkovo nám. 2a, Po 18:00–19:50 N21
M4122/03: Po 16:00–17:50 M3,04005 - dříve Janáčkovo nám. 2a, Po 16:00–17:50 N21 - Předpoklady
- M3121 Pravděpodobnost
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, postačující statistika, Raova-Blackwellova věta, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda, bayesovské odhady, metoda chi^2 minima ); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma, testy poměrem věrohodností; testy o parametrech normálního rozdělení, testy založené na centrální limitní větě, testy dobré shody.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2005
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Skula, DrSc. (přednášející)
RNDr. Marie Forbelská, Ph.D. (cvičící)
RNDr. Štěpán Mikoláš (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Skula, DrSc. - Rozvrh
- Čt 14:00–15:50 N21
- Rozvrh seminárních/paralelních skupin:
M4122/02: Čt 18:00–19:50 N21, Š. Mikoláš, Rozvrhově dopdoručeno: Mb,Mf,Ms
M4122/03: Út 17:00–18:50 N21, Š. Mikoláš, Rozvrhově dopdoručeno: Me - Předpoklady
- M3121 Pravděpodobnost
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 9 mateřských oborů, zobrazit
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, postačující statistika, Raova-Blackwellova věta, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda, bayesovské odhady, metoda chi^2 minima ); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma, testy poměrem věrohodností; testy o parametrech normálního rozdělení, testy založené na centrální limitní větě, testy dobré shody.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2004
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Skula, DrSc. (přednášející)
RNDr. Marie Forbelská, Ph.D. (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Skula, DrSc. - Rozvrh seminárních/paralelních skupin
- M4122/01: Út 9:00–10:50 UM, M. Forbelská, 2.r. M
M4122/02: Út 7:00–8:50 UM, M. Forbelská, 2.r.Me,Mb - Předpoklady
- M3121 Pravděpodobnost
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, postačující statistika, Raova-Blackwellova věta, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda, bayesovské odhady, metoda chi^2 minima ); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma, testy poměrem věrohodností; testy o parametrech normálního rozdělení, testy založené na centrální limitní větě, testy dobré shody.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2003
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Jaroslav Michálek, CSc. (přednášející)
doc. Mgr. Zuzana Hübnerová, Ph.D. (cvičící) - Garance
- doc. RNDr. Jaroslav Michálek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Jaroslav Michálek, CSc. - Rozvrh seminárních/paralelních skupin
- M4122/01: Rozvrh nebyl do ISu vložen. Z. Hübnerová
M4122/02: Rozvrh nebyl do ISu vložen. Z. Hübnerová - Předpoklady
- M3121 Pravděpodobnost
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, postačující statistika, Raova-Blackwellova věta, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda, bayesovské odhady, metoda chi^2 minima ); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma, testy poměrem věrohodností; testy o parametrech normálního rozdělení, testy založené na centrální limitní větě, testy dobré shody.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2012 - akreditace
Údaje z období jaro 2012 - akreditace se nezveřejňují
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
- Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- M3121 Pravděpodobnost a statistika I
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-BI)
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řiešení úloh jednoduchých i úloh komplexního charakteru, domácí úlohy
- Metody hodnocení
- Přednáška s cvičením. Aktívní práca na cvičeních. Dvě písemné práce počas semestra. Skúška písomní i ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2011 - akreditace
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- RNDr. Marie Forbelská, Ph.D. (přednášející)
- Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- M3121 Pravděpodobnost
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-BI)
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení. Na konci tohoto kurzu bude student schopen na základě nabytých znalosti používat jednoduché statistické metody.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma; testy o parametrech normálního rozdělení.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příkladmi Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řiešení úloh jednoduchých i úloh komplexního charakteru, domácí úlohy
- Metody hodnocení
- Přednáška s cvičením. Aktívní práca na cvičeních. Dvě písemné práce počas semestra. Skúška písomní i ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
M4122 Pravděpodobnost a statistika II
Přírodovědecká fakultajaro 2008 - akreditace
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Marie Forbelská, Ph.D. (přednášející)
prof. RNDr. Gejza Wimmer, DrSc. (přednášející)
doc. Mgr. Kamila Hasilová, Ph.D. (cvičící)
RNDr. Tomáš Pavlík, Ph.D. (cvičící)
Mgr. Jaroslava Sidorová (cvičící) - Garance
- prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Skula, DrSc. - Předpoklady
- M3121 Pravděpodobnost
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, M-AM)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje základy matematické statistiky, teorie odhadu a základních principů testování statistických hypotéz a je orientovaný na náhodné výběry z normálního rozdělení.
- Osnova
- Náhodný výběr: definice a výběrové charakteristiky, nestrannost a konzistence, výběry z normálního rozdělení, příklady bodových a intervalových odhadů. Teorie odhadu: nejlepší nestranné odhady, postačující statistika, Raova-Blackwellova věta, vydatné odhady; metody konstrukce bodových odhadů (metoda maximální věrohodnosti, momentová metoda, bayesovské odhady, metoda chi^2 minima ); kvantily a konstrukce intervalových odhadů. Testování hypotéz: základní pojmy, testy založené na intervalových odhadech, Neymanova-Pearsonovo lemma, testy poměrem věrohodností; testy o parametrech normálního rozdělení, testy založené na centrální limitní větě, testy dobré shody.
- Literatura
- Hogg, R.V. and Craig, A.T. Introduction to mathematical statistics. Macmillan Publishing. New York. Fourth editionn. 1978
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Stuart, A., Ord, K. and Arnold, S. Kendall's Advanced theory of statistics. Vol.1,2A, Arnold, London,1999
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Písemná část zkoušky je zejména orientována na ověření, zda student je schopen samostatně řešit jednotlivé pravděpodobnostní úlohy, které vycházejí z vyložené teorie. Cílem ústní časti zkoušky je prověřit, zda student vyložené teorii porozuměl a umí ji aplikovat.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (nejnovější)