M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 10:00–11:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Learning outcomes
- Student will be able to:
- numerical solving of ordinary differential equations - initial and boundary value problem - using computers - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2018
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 17. 9. to Fri 14. 12. Tue 10:00–11:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba znát základní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Wed 14:00–15:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba znát základní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 19. 9. to Sun 18. 12. Mon 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 13:00–14:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 10:00–11:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2013
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 9:00–10:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (lecturer) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 16:00–17:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- 2.Variational methods for solving ordinary differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 17:00–18:50 M1,01017
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- 2.Variational methods for solving ordinary differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2010
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 8:00–9:50 MS1,01016
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- 2.Variational methods for solving ordinary differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 11:00–12:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations and basic principles of methods for solving partial differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- Methods for solving partial differential equations:
- 1.Finite-difference method, (convergence and stability of difference schemes).
- 2.Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 12:00–13:50 MS1,01016
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
The most important methods for solving initial-value and boundary-value problems are introduced.
Particular methods are not only described from the theoretical point of view, but they are also reviewed from the point of view of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- Methods for solving partial differential equations:
- 1.Finite-difference method, (convergence and stability of difference schemes).
- 2.Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods
- lectures,class exercises,
oral examination. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 10:00–11:50 UP1
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2006
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Wed 10:00–11:50 UP1
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Tue 7:00–8:50 N41
- Timetable of Seminar Groups:
- Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Mon 9:00–10:50 B011
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I && M5180 Numerical Methods II
Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Biology (programme PřF, N-BI)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable of Seminar Groups
- M9100/01: No timetable has been entered into IS. J. Zelinka
- Prerequisites
- M4180 Numerical methods I && M5180 Numerical Methods II
Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2002
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer), Mgr. Jiří Zelinka, Dr. (deputy)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2001
- Extent and Intensity
- 2/1/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer), Mgr. Jiří Zelinka, Dr. (deputy)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Prerequisites (in Czech)
- ( M5122 Numerical Methods II || M6122 Numerical Methods II ) && ( M5160 Differential Eqs.&Cont. Models || M6160 Differential Eqs.&Cont. Models ) && M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- Cauchy initial problem,Runge- Kutta methods for ordinary differential
equations,multistep methods
Variational methods,Ritz method, Galerkin method
Finite elements methods for partial differential equations
Finite difference methods for partial differential equations
Shooting methods for boundary value problem - Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- Assessment methods (in Czech)
- Zkouška ústní
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2000
- Extent and Intensity
- 2/1/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer), Mgr. Jiří Zelinka, Dr. (deputy)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- Cauchy initial problem,Runge- Kutta methods for ordinary differential
equations,multistep methods
Variational methods,Ritz method, Galerkin method
Finite elements methods for partial differential equations
Finite difference methods for partial differential equations
Shooting methods for boundary value problem - Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- Assessment methods (in Czech)
- Zkouška ústní
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 1999
- Extent and Intensity
- 2/1/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer), Mgr. Jiří Zelinka, Dr. (deputy)
Mgr. Jiří Zelinka, Dr. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Prerequisites (in Czech)
- M5122 Numerical Methods II && M5160 Differential Eqs.&Cont. Models && M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Syllabus
- Cauchy initial problem,Runge- Kutta methods for ordinary differential equations,multistep methods
- Variational methods,Ritz method, Galerkin method
- Finite elements methods for partial differential equations
- Finite difference methods for partial differential equations
- Shooting methods for boundary value problem
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- Assessment methods (in Czech)
- Zkouška ústní
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2023
The course is not taught in Autumn 2023
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Learning outcomes
- Student will be able to:
- numerical solving of ordinary differential equations - initial and boundary value problem - using computers - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2022
The course is not taught in Autumn 2022
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Learning outcomes
- Student will be able to:
- numerical solving of ordinary differential equations - initial and boundary value problem - using computers - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of Scienceautumn 2021
The course is not taught in autumn 2021
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Learning outcomes
- Student will be able to:
- numerical solving of ordinary differential equations - initial and boundary value problem - using computers - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2020
The course is not taught in Autumn 2020
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
- Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Learning outcomes
- Student will be able to:
- numerical solving of ordinary differential equations - initial and boundary value problem - using computers - Syllabus
- 1. Introduction: The solvability of differential equations, approximate solutions, error, stability.
- 2. One-step methods: Euler method, Taylor series method, Runge-Kutta methods
- 3. Multistep methods: Adams methods, predictor-corrector
- 4. Boundary value problems: shooting method, method of differences
- 5. Variational methods: Ritz method, Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures, class exercises
- Assessment methods
- Oral examination with preparation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- 2.Variational methods for solving ordinary differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving ordinary differential equations
Faculty of ScienceAutumn 2010 - only for the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The course gives a survey of methods for numerical solving
of differential equations (ordinary and partial).
Students will acquire the most important methods for solving initial-value, boundary-value problems for ordinary differential equations.
At the end of this course, students will be able to compare the methods not only from the theoretical point of view, but they will understand them from the point of stability, efficiency, etc. - Syllabus
- Methods for solving ordinary differential equations :
- 1.Initial-value problems (Runge-Kutta methods, multistep methods).
- 2.Boundary-value problems (shooting method, difference methods)
- 2.Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Teaching methods
- Lectures,class exercises
- Assessment methods
- Oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
M9100 Numerical methods for solving differential equations
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Prerequisites
- Basic numerical methods of mathematical analysis and linear algebra. Basis of functional analysis
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, N-IN)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The solving of large technical and scientific problems can be often modeled by means of differential equations.Practical solving of such problems consists in application of suitable numerical method. This course aims to give a survey of methods for numerical solving of differential equations.The most important methods for solving of initial-value and boundary-value problems for ordinary equations and methods for partial differential equations are introduced. Particular methods are not only described from the theoretical point of view,but they are also reviewed from the point of view of stability,efficiency ,etc.The practical examples indicate the possible characteristic difficulties in applications.
- Syllabus
- Variational methods for solving ordinary and partial differential equations:Ritz method,Galerkin method. Methods for solving ordinary differential equations : 1.Initial-value problems (Runge -Kutta methods,multistep methods). 2.Boundary-value problems (shooting method,difference methods) Methods for solving partial differential equations: Finite -difference method,convergence and stability of difference schemes.
- Literature
- VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
- BABUŠKA, Ivo and Milan PRÁGER. Numerické řešení diferanciálních rovnic (Numerical solution of differential equations). 1st ed. Praha: Státní nakladatelství technické literatury, 1964, 238 pp. info
- REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
- RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
- Assessment methods (in Czech)
- Přednáška,cvičení částečně v počítačové učebně. Zkouška :ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
General note: Pro zapsání předmětu je třeba zná tzákladní numerické metody matematické analýzy a lineární algebry a základy funkcionální analýzy.
- Enrolment Statistics (recent)