PřF:M2110 Linear Algebra II - Course Information
M2110 Linear Algebra and Geometry II
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
RNDr. Jarmila Elbelová, Ph.D. (seminar tutor)
Mgr. Michal Fikera (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable of Seminar Groups
- M2110/01: No timetable has been entered into IS. M. Fikera
M2110/02: No timetable has been entered into IS. J. Elbelová
M2110/03: No timetable has been entered into IS. J. Elbelová - Prerequisites
- M1110 Linear Algebra I
Knowledege of basic notion of linear algebra is supposed. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, M-MA)
- Upper Secondary School Teacher Training in Mathematics (programme PřF, M-MA)
- Course objectives
- The aim of this second course in linear algebra is to introduce other basic notions such as affine and projective spaces, bilinear and quadratic forms, eingenvalues and eigenvectors of linear operators. In more details the spaces with scalar product and properties of orthogonal and selfadjoint operators are examined. All is applied in affine and Euclidean geometry and in classification of quadrics. At the end we deal with the Jordan canonical form.
- Syllabus
- Affine geometry: affine spaces and subspaces, affine geometry and affine mappings. Bilinear and quadratic forms: definition, matrix with respect to given basis, diagonalization, signature,quadrics and their affine classification. Euklidean geometry: orthogonal projection, distance and deviation of affine subspaces. Linear operators: invariant subspaces, eigenvalues and eigen vectors, charakteristic polynomial, algebraic and geometric multiplicity of eigenvalues, conditions for diagonalization. Ortogonal a unitar operators: definition and basic properties, eigenvalues, geometric meaning. Self adjoint operators: adjoint operator, symmetric and hermitian matrices, spectral decomposition, metric classification quadrics. Jordan canonical form: nilpotent endomorphisms, root subspaces, computations.
- Literature
- Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Information on completion of the course: Studenti programu matematika a aplikovaná matematika si musejí zapsat zkoušku.
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.math.muni.cz/~cadek
- Enrolment Statistics (Spring 2003, recent)
- Permalink: https://is.muni.cz/course/sci/spring2003/M2110