M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2009
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Čt 10:00–10:50 MP1,01014, Čt 10:00–10:50 M3,01023
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí homogenních markovských řetězců se spojitým časem. Při výpočtech spojených s analýzou těchto řetězců bude schopen používat systém MATLAB.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB. Zkouška je písemná.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.