PřF:F2423 Početní praktikum 2 - Informace o předmětu
F2423 Početní praktikum 2
Přírodovědecká fakultajaro 2012 - akreditace
Údaje z období jaro 2012 - akreditace se nezveřejňují
- Rozsah
- 0/3. 3 kr. Ukončení: kz.
- Vyučující
- Mgr. Marek Chrastina, Ph.D. (přednášející)
- Garance
- prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Marek Chrastina, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta - Předpoklady
- Doporučuje se zvládnutí základních operací při derivování a integrování na gymnaziální úrovni.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Fyzika (program PřF, B-FY)
- Cíle předmětu
- Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky a základů biofyziky.
- Osnova
- 1. Dvojný integrál:Fubiniova věta, věta o transformaci integrálu, fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
- 2. Trojný integrál: Fubiniova věta, věta o transformaci integrálu, fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
- 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
- 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
- 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
- 6. Praktické výpočty plošných integrálů.
- 7. Integrální věty.
- 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
- 9. Aplikace integrálních vět v mechanice kontinua.
- 10. Řady funkcí: Taylorova řada, aplikace (odhady).
- 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
- 12. Základy tenzorové algebry.
- Literatura
- KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 1. Praha: Academia, 1989, 383 s. ISBN 8020000887. info
- Výukové metody
- Cvičení založené na řešení typických problémů.
- Metody hodnocení
- Závěrečné hodnocení se stanoví ze součtu bodů získaných ze 3 dílčích písemek. Za každou dílčí písemku je možné získat 5 bodů. Dle Studijního a zkušebního řádu Masarykovy univerzity, čl. 9, ods. 2 je účast na výuce povinná. Neúčast na výuce je možné nahradit náhradními úkoly, které budou zveřejněny na stránkach předmětu. Náhradní úkoly je nutno odevzdat do 27.6.2011.
- Informace učitele
- http://physics.muni.cz/~chm/
Přednášky k předmětu jsou obsaženy v předmětu F2422 Základní matematické metody ve fyzice 2. Vřele doporučuji je absolvovat. Výukové materiály a příklady k procvičování naleznete na webové stránce předmětu: http://physics.muni.cz/~chm/. Upozorňuji, že stránka je průběžne aktualizovaná. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Statistika zápisu (jaro 2012 - akreditace, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/jaro2012-akreditace/F2423