M7190 Teorie her

Přírodovědecká fakulta
jaro 2017
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučující
Mgr. David Kruml, Ph.D. (přednášející)
Mgr. Roman Štěpánek (cvičící)
Garance
doc. RNDr. Libor Polák, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 20. 2. až Po 22. 5. Út 16:00–17:50 M4,01024
  • Rozvrh seminárních/paralelních skupin:
M7190/T01: St 8. 3. až Po 22. 5. St 10:00–12:00 114, R. Štěpánek, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
M7190/01: Po 20. 2. až Po 22. 5. Pá 8:00–9:50 M5,01013, D. Kruml
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I || FI:MB101 Lineární modely || FI:MB201 Lineární modely B || FI:MB003 Lineární algebra
Základy lineární algebry a diferenciálního počtu.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 8 mateřských oborů, zobrazit
Cíle předmětu
Po absolvování kurzu studenti řádně porozumí třem základním matematickým modelům (normální tvar, charakteristická funkce, poziční hry) a zvládnou různé koncepty rovnováhy a jejich výpočty. Dále budou studenti schopni formalizovat praktické problémy nalezením vhodných matematických modelů a diskutovat jejich rovnováhy.
Osnova
  • Hry n hračů v normální formě (koncepty rovnováhy, jejich existence). Hry 2 hračů v normální formě (antagonistické hry, optimalní stratégie, řešení maticových her, hry na čtverci, víceetapové hry). Neantagonistické hry 2 hráčů (bimaticové hry, teorie užitečnosti, úlohy o dohodě, vyhrožování). Hry n hračů ve tvaru charakteristické funkce (jádro, jeho existence, von Neumann-Morgensternovo řešení, Shapleyho hodnota, aplikace v ekonomii). Poziční hry.
Literatura
  • G. Owen, Game Theory, Sounders Company 1983
  • Handbook of game theory with economic applications. Edited by Robert J. Aumann - Sergiu Hart. Amsterdam: North-Holland, 1994, 1520 s. ISBN 0444894276. info
Výukové metody
Jednou týdně dvouhodinová klasická přednáška zahrnující teorii i praktické úlohy. V navazujícím dvouhodinovém semináři se řeší další úlohy většinou předem oznámené. U náročnějších se předem určují i referující.
Metody hodnocení
Písemná zkouška zahrnující řešení rozsáhlejší úlohy v normálním tvaru plus další dvě úlohy týkající se jiných typů her. U všech částí úloh je oznámen maximální počet bodů; je třeba získat celkově polovinu. Kolokvium: řeší se část úloh pro zkoušku či jejich zjednodušení, tak, aby stačila běžná rutina; opět se vyžaduje polovina.
Informace učitele
http://www.math.muni.cz/~polak
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, podzim 2002, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2018, jaro 2019, jaro 2021, jaro 2023, jaro 2025.