M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2018
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 14:00–14:50 MP1,01014, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot. Po absolvování tohoto kurzu bude student schopen aplikovat tyto metody při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.