PřF:M6110 Pojistná matematika - Informace o předmětu
M6110 Pojistná matematika
Přírodovědecká fakultajaro 2025
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně - Vyučující
- Mgr. Silvie Zlatošová, Ph.D. (přednášející)
- Garance
- Mgr. Silvie Zlatošová, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 17. 2. až So 24. 5. Út 12:00–13:50 M6,01011
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2120 Finanční matematika I
Předpokladem úspěšného zvládnutí předmětu jsou znalosti z kurzů pravděpodobnosti a statistiky (M3121 Pravděpodobnost a statistika I nebo BKM_MATE Matematika, BPM_STA1 Statistika 1 a BPM_STA2 Statistika 2). - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Cílem předmětu je seznámit studenty se základními výpočtovými metodami a postupy využívajícími se v životním a neživotním pojištění.
Student je po úspěšném absolvování předmětu schopen:
-vysvětlit základní pojmy pojistné matematiky,
-aplikovat metody a postupy výpočtu pojistného klasických druhů pojištění,
-odhadovat rezervy v životním i neživotním pojištění,
-samostatně řešit problémy nestandardních druhů pojištění. - Výstupy z učení
- Cílem předmětu je seznámit studenty se základními výpočtovými metodami a postupy využívajícími se v životním a neživotním pojištění.
Student je po úspěšném absolvování předmětu schopen:
-vysvětlit základní pojmy pojistné matematiky,
-aplikovat metody a postupy výpočtu pojistného klasických druhů pojištění,
-odhadovat rezervy v životním i neživotním pojištění,
-samostatně řešit problémy nestandardních druhů pojištění. - Osnova
- Tematický plán - přednášky
- 1. Základní pojmy, základní principy pojištění, rizika pojišťovny.
- (pojistné riziko, pojistný vztah, pojistitelná rizika, životní pojištění, neživotní pojištění, principy – solidárnost, podmíněná návratnost, neekvivalentnost, rizika vyplývající z podnikatelské a pojišťovací činnosti pojišťovny, pojistně technické riziko pojišťovny)
- Životní pojištění
- 2. Modely přežití
- (budoucí délka života, intenzita úmrtnosti, zákony úmrtnosti, aktuárské značení)
- 3. Úmrtnostní tabulky a selekce
- (úmrtnostní tabulky, komutační čísla, předpoklad neceločíselného věku osob, proces selekce, selektivní model přežití)
- 4. Pojistné plnění a jeho hodnota pro pojištění pro případ smrti a pro případ dožití.
- (Pojištění pro případ smrti - spojitý, roční a 1/m roční případ výplaty pojistného plnění, rekurzivní vzorec, doživotní a termínované pojištění. Pojištění pro případ dožití.
- 5. Pojistné plnění a jeho hodnota pro smíšené pojištění, odložené formy pojištění, anuity (důchodové) pojištění.
- (smíšené pojištění důchodová pojištění (předlhůtní, polhůtní, doživotní, dočasná, odložená, rostoucí a klesající pojistná částka, garantované důchody)
- 6. Výpočet jednorázového pojistného, výpočet běžného netto pojistného, všeobecná rovnice ekvivalence.
- (odvození vzorců + příklady)
- 7. Brutto pojistné u životního pojištění a jeho výpočet.
- (dělení nákladů pojišťovny, počáteční náklady, běžné správní náklady, inkasní náklady, brutto pojistné placené jednorázově a běžně)
- 8. Technické rezervy v pojištění osob.
- (dělení technických rezerv, rezerva pojistného životních pojištění, výpočet netto rezervy, ukládací a riziková část pojistného)
- 9. Zillmerova rezerva, pojistně matematické výpočty založené na netto rezervě a brutto rezervě.
- (výpočet Zillmerovy rezervy, odkupné, výpočet redukované pojistné částky, změna typu pojištění, dynamizace)
- Neživotní pojištění
- 10. Tarifní skupiny a základní ukazatele, brutto pojistné.
- (příklady tarifování, statistické ukazatele pojištění – průměrné pojistné plnění, škodní frekvence, škodní stupeň, obecný vzorec netto pojistného, výpočet pojistného - ryzí zájmové pojištění, pojištění na plnou hodnotu, pojištění na první riziko, spoluúčast - podílová, excendentní, integrální)
- 11. Technické rezervy, výpočet rezervy na pojistná plnění.
- (brutto pojistné – bezpečnostní přirážka, dělení technických rezerv, výpočet rezerv na pojistná plnění pomocí trojúhelníkových schémat - metoda chain ladder, separační metoda)
- 12. Bonus-malus systém, Markovská analýza.
- (základní pojmy, markovská analýza, matice pravděpodobnosti přechodu mezi skupinami, stav systému po t letech, stacionární vektor – ustálený stav systému, hlad po bonusu)
- 13. Základy modelování individuálního rizika.
- (úvod do teorie rizika, modely počtu a výše pojistných nároků, základní pravděpodobnostní rozdělení počtu a výše pojistných nároků, pojistné modely v čase)
- Tematický plán – cvičení
- Studenti budou řešit samostatně úlohy, kde budou uplatňovat teoretické základy pojistné matematiky z jednotlivých témat přednášek a vlastního studia. Na cvičeních v závěru semestru budou probíhat prezentace projektů.
- Literatura
- doporučená literatura
- PROMISLOW, S. David. Fundamentals of actuarial mathematics. Chichester: John Wiley & Sons, 2006, xix, 372. ISBN 0470016892. info
- GERBER, Hans U. Life insurance mathematics. Edited by Samuel H. Cox. 3rd ed. Zurich: Springer, 1997, xvii, 217. ISBN 354062242X. info
- MILBRODT, Hartmut a Manfred HELBIG. Mathematische Methoden der Personenversicherung. Berlin: Walter de Gruyter, 1999, xi, 654. ISBN 3110142260. info
- BOOTH, P. Modern actuarial theory and practice. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2005, xxxiii, 79. ISBN 1584883685. info
- MØLLER, Thomas a Mogens STEFFENSEN. Market-valuation methods in life and pension insurance. 1st ed. Cambridge: Cambridge University Press, 2007, xiv, 279. ISBN 9780521868778. info
- neurčeno
- DICKSON, D. C. M., Mary HARDY a H. R. WATERS. Actuarial mathematics for life contingent risks. 2nd ed. Cambridge: Cambridge University Press, 2013, xxi, 597. ISBN 9781107044074. info
- CIPRA, Tomáš. Pojistná matematika : teorie a praxe. 2., aktualiz. vyd. Praha: Ekopress, 2006, 411 s. ISBN 8086929116. info
- Výukové metody
- Monologická přednáška s ukázkou řešení příkladů a problémů týkajících se daného tématu. Poté probíhá diskuze se studenty. Na seminářích studenti samostatně řeší zadané úlohy. Některé úlohy budou řešeny pomocí jazyka R.
- Metody hodnocení
- Požadavky na ukončení předmětu:
V průběhu semestru:
-Studenti vypracují projekt s použitím jazyka R. V projektu bude řešen vybraný problém a budou využity probírané techniky.
- Studenti tento projekt obhájí v závěru semestru na cvičení.
- Studenti zároveň hodnotí přidělené projekty svých vylosovaných kolegů a poskytují zpětnou vazbu.
- Za tyto aktivity mohou studenti získat až 20 bodů. Pro připuštění ke zkoušce je nutné obdržet alespoň 12 bodů.
-Nutnou podmínkou pro ukončení předmětu je mít nejvýše 3 neomluvené absence na cvičení.
-Zkouška je písemná a je možné za ni obdržet až 30 bodů. Student řeší příklady nebo problémy probírané na přednáškách a cvičeních, případně také teoretické otázky. Pro úspěšné absolvování zkoušky musí student z písemky získat alespoň 18 bodů.
-Body ze semestru a z písemné zkoušky jsou sečteny a student obdrží známku dle této stupnice:
A: [46; 50]
B: [42; 46)
C: [38; 42)
D: [34; 38)
E: [30; 34)
F: [0; 30).
Jakékoli opisování, zaznamenávání nebo vynášení testů, používání nedovolených pomůcek jakož i komunikačních prostředků nebo jiné narušování objektivity zkoušky (zápočtu) bude považováno za nesplnění podmínek k ukončení předmětu a za hrubé porušení studijních předpisů. Následkem toho uzavře vyučující zkoušku (zápočet) hodnocením v ISu známkou "F" a děkan zahájí disciplinární řízení, jehož výsledkem může být až ukončení studia. - Navazující předměty
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/jaro2025/M6110