M8986 Statistical inference II

Faculty of Science
Spring 2025
Extent and Intensity
2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
In-person direct teaching
Teacher(s)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (lecturer)
Mgr. Zdeňka Geršlová (seminar tutor)
Guaranteed by
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science
Prerequisites (in Czech)
M7986 Statistical inferences I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main goal of the course is to become familiar with some basic principles of testing statistical hypotheses base on Wald principle, likelihood and score principle connecting the statistical theory with MC simulations, implementation in R, geometry, and statistical graphics; to understand and explain basic principles of parametric statistical inference for categorical data; to implement these techniques in R language; to be able to apply them to real data.
Learning outcomes
Student will be able:
to understand principles of likelihood and statistical inference for discrete data;
to select suitable probabilistic and statistical model in statistical inference for discrete data;
to build up and explain suitable simulation study for selected statistical test or confidence intervals for discrete data;
to build up and explain suitable statistical test for discrete data;
to apply statistical inference for discrete data;
to implement methods of statistical inference for discrete data in R.
Syllabus
  • Discrete probability distributions, maximum likelihood estimates of their parameters.
  • Principles of MC simulations in testing statistical hypotheses.
  • Design in one-, two-, and multi-sample experiments.
  • Design for contingency tables.
  • Design in linear regression model for categorical data.
Literature
    recommended literature
  • KATINA, Stanislav, Miroslav KRÁLÍK and Adéla HUPKOVÁ. Aplikovaná štatistická inferencia I. Biologická antropológia očami matematickej štatistiky (Applied statistical inference I). 1. vyd. Brno: Masarykova univerzita, 2015, 320 pp. ISBN 978-80-210-7752-2. info
  • COX, D. R. Principles of statistical inference. 1st ed. Cambridge: Cambridge University Press, 2006, xv, 219. ISBN 0521685672. info
  • CASELLA, George and Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 0534243126. info
Teaching methods
Lectures, practicals. On-line using MS Teams or full-time according to the according to the development of the epidemiological situation and the applicable restrictions.
Assessment methods
Homework, oral exam. The conditions may be specified according to the development of the epidemiological situation and the applicable restrictions.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Teacher's information
Přednášky budou probíhat prezenčně dle rozvrhu. V IS bude vždy k dispozici záznam textu přednášky v PDF (přednášející text píše elektronickým perem na obrazovce tabletu a tento se zobrazuje na plátně) a slajdy v PDF s TeXovaným textem. Záznamy se budou sdílet až po dané přednášce a před další přednáškou.

K získání zápočtu je potřeba aktivní účast na cvičeních (povolené jsou 2 neomluvené absence). Za omluvenou absenci se považuje výhradně absence omluvená na studijním oddělení a zavedená do informačního systému v řádném termínu (do 5 pracovních dnů od termínu konání výuky). Je to v souladu se studijním řádem, kde se v čl.9 odstavci (7) píše, že (7) Student je povinen písemně omluvit na studijním oddělení fakulty svou neúčast do 5 pracovních dnů od termínu konání výuky, jež je omlouvána.

The course is also listed under the following terms Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/spring2025/M8986