MUC12 Matematická analýza 2

Přírodovědecká fakulta
jaro 2025
Rozsah
2/2/0. 4 kr. Ukončení: zk.
Vyučováno kontaktně
Vyučující
Mgr. Petr Liška, Ph.D. (přednášející)
Mgr. Ondřej Suchánek (cvičící)
Bc. Tomáš Škaryd (pomocník)
Garance
Mgr. Petr Liška, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Znalost diferenciálního počtu funkce jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Hlavním cílem kurzu je porozumět hlavním pojmům, výsledkům a technikám výpočtů integrálního počtu funkcí jedné proměnné.
Po absolvování kurzu studenti budou schopni:
definovat a interpretovat určité i neurčité integrály;
užívat efektivní techniky integrace funkcí jedné proměnné;
aplikovat získané poznatky o integrálech k řešení konkrétních úloh, především z geometrie a fyziky.
Dalším cílem kurzu je porozumět číselným řadám (geometrická řada, operace s číselnými řadami, konvergence), mocninným řadám a základům finanční matematiky – jednoduché úročení, spoření.
Výstupy z učení
Po absolvování kurzu studenti budou schopni:
definovat a interpretovat určité i neurčité integrály;
užívat efektivní techniky integrace funkcí jedné proměnné;
aplikovat získaníé poznatky o integrálech k řešení konkrétních úloh, především z geometrie a fyziky.
znát základy teorie číselných řad – geometrická řada, operace s číselnými řadami, konvergence.
znát základní úlohy finanční matematiky - jednoduché úročení a spoření.
Osnova
  • Integrální počet funkcí jedné proměnné: neurčitý integrál, Riemannův integrál, základní integrační metody, integrace racionální funkce a některých speciálních typů funkcí, geometrické aplikace (obsah a objem – kartézské souřadnice a parametrické vyjádření).
  • Číselné řady – Geometrická řada. Operace s číselnými řadami. Konvergence.
  • Mocninné řady.
  • Finanční matematika – jednoduché úročení, spoření.
Literatura
  • DOŠLÝ, Ondřej a Petr ZEMÁNEK. Integrální počet v R. 1. vydání. Brno: Masarykova univerzita, 2011, 222 s. ISBN 978-80-210-5635-0. info
  • Kuben, Jaromír - Hošková, Šárka - Račková, Pavlína. Integrální počet funkcí jedné proměnné; VŠB-TU Ostrava, elektronický text vytvořený v rámci projektu CZ.04.1.03/3.2.15.1/0016 ESF ČR. Dostupné z: http://homel.vsb.cz/~s1a64/cd/pdf/print/ip.pdf.
  • NOVÁK, Vítězslav. Integrální počet v R. 2. vyd. Brno: Masarykova univerzita, 1994, 148 s. ISBN 8021009918. info
  • DULA, Jiří a Jiří HÁJEK. Cvičení z matematické analýzy : Riemannův integrál. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 84 s. info
  • Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
  • DOŠLÁ, Zuzana a Vítězslav NOVÁK. Nekonečné řady. 3. vyd. Brno: Masarykova univerzita, 2013, iv, 113. ISBN 9788021064164. info
Výukové metody
Dvouhodinová přednáška a cvičení ve skupinách.
Metody hodnocení
Domácí úkoly, případně dvě zápočtové písemky (dle domluvy). Zkouška s písemnou i ústní částí.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/sci/jaro2025/MUC12