PřF:Bi0034 Analýza a klasif dat - Informace o předmětu
Bi0034 Analýza a klasifikace dat
Přírodovědecká fakultapodzim 2009
- Rozsah
- 2/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: z.
- Vyučující
- prof. Ing. Jiří Holčík, CSc. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. Ing. Jiří Holčík, CSc. - Rozvrh
- St 10:00–11:50 G2,02003
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, M-BI)
- Cíle předmětu
- Po absolvování předmětu student: - má základní teoretické a metodologické znalosti principů rozpoznávání a klasifikace matematických popisů reálných objektů s důrazem na zpracování biologických dat - dokáže vysvětlit souvislosti a vzájemné vztahy mezi vlastnostmi reálných procesů a jimi generovaných dat a použitými metodami a algoritmy; - umí aplikovat různé metody a algoritmy zpracování dat k dosažení požadovaných výsledků; - umí navrhnout různé modifikace popisovaných algoritmů vhodné pro zpracování dat specifických vlastností.
- Osnova
- 1. Klasifikace dat – základní terminologie. Třídění klasifikačních algoritmů. 2. Příznakové metody. Klasifikace podle diskriminačních funkcí a minimální vzdálenosti. 3. Stanovení diskriminačních funkcí na základě statistických vlastností množiny obrazů. 4. Sekvenční klasifikace. 5. Volba a výběr příznaků. 6. Analýza hlavních komponent. 7. Analýza nezávislých komponent. 8. Faktorová analýza 9. Učení klasifikátorů. Metody odhadu hustot pravděpodobnosti a odhad apriorních pravděpodobností klasifikačních tříd. 10. Shlukování. Podobnost mezi obrazy a shluky. 11. Metody shlukování. 12. Klasifikace pomocí neuronových sítí.
- Literatura
- Mitchel,T.M.: Machine Learning. McGraw Hill 1997
- Dunham,M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall 2002
- Holčík,J.: Analýza a klasifikace signálů. [Učební texty vysokých škol] Brno, Nakladatelství VUT v Brně 1992.
- Výukové metody
- Přednášky podporované Power Pointovými prezentacemi, přičemž je kladem důraz na pochopení základních principů popisovaných metod a algoritmů. Během přednášek jsou studenti průběžně interaktivně oslovováni s cílem kontrolovat míru jejich pochopení přednášené látky.
- Metody hodnocení
- ústní zkouška
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2009, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2009/Bi0034