Bi0440 Lineární a adaptivní zpracování dat

Přírodovědecká fakulta
podzim 2011 - akreditace

Údaje z období podzim 2011 - akreditace se nezveřejňují

Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. Ing. Daniel Schwarz, Ph.D. (přednášející)
prof. Ing. Jiří Holčík, CSc. (přednášející)
Garance
prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: doc. Ing. Daniel Schwarz, Ph.D.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Množství dat, která reprezentují procesy, projevy a činnosti živých systémů, narůstá spolu s rapidním vývojem digitálních technologií, jež nám tato data umožňují pořizovat, přenášet a ukládat. Zvyšuje se tak i význam metod z oblasti digitálního zpracování a analýzy signálů, jejichž cílem je zvýrazňování signálů v šumu nebo transformace naměřených dat tak, aby mohly být objeveny jejich skryté vlastnosti. V dané oblasti tento předmět vysvětluje lineární a adaptivní techniky zpracování dat. Na konci tohoto kurzu bude student schopen porozumět a vysvětlit metody pro lineární a adpativní zpracování a analýzu signálů. Student bude schopen navrhnout a použít vlastní lineární systém pro potlačování šumu a zkreslení v naměřených datech;
Osnova
  • P1. Úvod: SIGNÁLY a SYSTÉMY. Signály, časové řady, posloupnosti, data. Klasifikace signálů, vlastnosti. Vzorkovací věta, aliasing – zatím jako dogma. Kvantování. Definice, struktura systému. Příklady systémů vlastnosti: kauzalita, časová invariantnost, linearita. Princip superpozice. Cvičení: 1) poměr signálu ke kvantizačnímu šumu v závislosti na počtu kvantovacích hladin 2) demonstrace aliasingu – 1-D (zvuk), 2-D (obraz).

  • P2: SYSTÉMY a jejich popis v časové doméně. LTI systémy. Popis LTI systému v časové oblasti. Odvození konvoluce a impulsní charakteristiky. Cvičení: 1) realizace vlastní funkce pro konvoluci. 2) Hranový detektor pro detekci bodů zlomu v časové řadě. 3) Nalezení odezvy systému s předepsanou diferenční rovnicí na předložený signál

  • P3: SIGNÁLY, SYSTÉMY a jejich popis ve frekvenční oblasti. Fourierovy řady v komplexním tvaru. Eulerovy vztahy. Vlastnosti FŘ: Parcevalův teorém, Konvoluční teorém. Fourierova řada diskrétního signálu = Fourierova transformace s diskrétním časem (DTFT). Odezva systému na harmonický signál, frekvenční charakteristika. Princip filtrování, idealizované filtry. Normovaný kmitočet, normovaná frekvence. Vazby mezi systémy – komutativita, asociativita, distributivita operátoru konvoluce. FŘ, DTFT, DFT, FT. Vzorkování, překrývání spekter. Cvičení: 1) výpočet frekvenční charakteristiky systému z jeho diferenční rovnice (Eulerovy vztahy). 2) demonstrace aliasingu.

  • P4. Lineární filtrace: Z-transformace, stabilita. Z transformace, přenosová funkce systému. Vztah přenosové funkce a frekvenční charakteristiky. Nuly, póly. Odhad tvaru frekvenční charakteristiky z rozložení nul a pólů přenosové funkce sytému. Dvě kritéria stability systému. Cvičení: 1) vyjádření přenosové funkce systému z jeho diferenční rovnice. Rozložení nulových bodů a pólů, určení stability a vykreslení frekvenční charakteristiky z přenosové funkce systému.

  • P5. Lineární filtrace: FIR, IIR. Popis diskrétní soustavy se Z transformací, diferenční rovnice obecného LTI systému a její realizace (přímá, kaskádní atd.) . FIR systémy s konečnou impulsní charakteristikou, IIR systémy s nekonečnou impulsní charakteristikou. Skupinové zpoždění. Terminologie: IIR, FIR, AR, MA, ARMA. Cvičení: Návrh FIR filtru metodou vzorkování frekvenční charakteristiky na odstranění rušivých složek v časové řadě reprezentující sběr údajů o koncentraci toxické látky v říčním toku.

  • P6. Kumulační zvýrazňování signálů v šumu. Repetiční signál, podmínky vymizení šumu, princip kumulačních technik, odvození zlepšení SNR pro kumulační techniky obecně, vliv korelace mezi realizacemi šumu v jednotlivých repeticích. Kumulační technika s pevným oknem. Cvičení: výpočet zlepšení SNR, grafické znázornění dynamických vlastností kumulace s pevným oknem.

  • P7. Kumulační zvýrazňování signálů v šumu. Kumulace s klouzavým oknem, exponenciální kumulace. Cvičení: Odhalení tvar repetice pomocí kumulace - různé metody. Grafické srovnání dynamických vlastností exponenciální kumulace a rovnoměrné kumulace s klouzavým oknem.

  • P8. Náhodné procesy a modely časový řad I. Aditivní model vzniku časové řady. Stacionarita - odstranění trendu odečtením proloženého polynomu nebo diferencováním. Sezónnost – autokorelační funkce časové řady, spektrum signálu. Cvičení: rozložení časové řady na její trend, sezónní složku a náhodnou složku.

  • P9. Náhodné procesy a modely časový řad II. Modely časových řad: AR, MA, ARMA, ARIMA, bílý šum. Posouzení kvality předpovídání. Analýza residuí – validace modelu. Cvičení: modelování náhodné složky časové řady z minulé lekce.

  • P10. Adaptivní filtrace a predikce I. Pojmy identifikace systémů a predikce. Predikční filtr, minimalizace střední kvadratické odchylky. Odvození normálních rovnic, řešení lineární algebrou, a tedy optimální filtrace, lineární predikce. Cvičení: predikce signálu s lineárním trendem, sezónní složkou a barevným šumem generovaným stacionárním AR(2) procesem, posouzení kvality předpovídání (System Identification Toolbox).

  • P11. Adaptivní filtrace a predikce II. Řešení normálních rovnic metodou nejstrmějšího sestupu, LMS algoritmus – predikční filtr se stochastickým gradientem. Cvičení: 1) predikce signálu generovaného AR(2) procesem - ilustrace konvergenčních vlastností LMS algoritmu. 2) - ilustrace schopnosti LMS filtru predikovat nestacionární signály.

  • P12. Adaptivní filtrace a predikce III. RLS algoritmus. Kalmanův filtr. Cvičení: ilustrace schopností RLS algoritmu predikovat časové řady

  • P13. Metody nelineární filtrace pro vyhlazování časových řad. Mediánový filtr. Savitzky-Golay filtrace. Cvičení: odstranění impulsního rušení ze signálů z měření perfuze krve. Výpočet derivace časové řady – analytické řešení místo diferencí.

Literatura
  • DEVASAHAYAM, Suresh R. Signals and systems in biomedical engineering : signal processing and physiological systems modeling. 1st ed. New York: Kluwer Academic/Plenum Publishers, 2000, xvi, 337. ISBN 0306463911. info
  • DRONGELEN, Wim van. Signal processing for neuroscientists : introduction to the analysis of physiological signals. Amsterdam: Academic Press, 2007, ix, 308. ISBN 9780123708670. info
  • Wavelets and their applications. Edited by Michel Misiti. London: ISTE, 2006, 330 s. ISBN 9781905209316. info
Výukové metody
teoretická příprava kombinována s počítačovým procvičováním s využitím matematického prostředí Matlab.
Metody hodnocení
ústní zkouška
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, podzim 2010 - akreditace, jaro 2006, jaro 2007, jaro 2008, jaro 2009, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.