PřF:F1422 Početní praktikum 1 - Informace o předmětu
F1422 Početní praktikum 1
Přírodovědecká fakultapodzim 2011 - akreditace
Údaje z období podzim 2011 - akreditace se nezveřejňují
- Rozsah
- 0/3. 3 kr. Ukončení: kz.
- Vyučující
- Mgr. Marek Chrastina, Ph.D. (přednášející)
prof. RNDr. Jana Musilová, CSc. (přednášející) - Garance
- prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Marek Chrastina, Ph.D. - Předpoklady
- Doporučuje se zvládnutí základních operací při derivování a integrování na gymnaziální úrovni.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Cíle předmětu
- Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky a základů biofyziky.
- Osnova
- 1. Derivace a integrál funkce jedné proměnné, procvičení základních operací.
- 2. Základy vektorové algebry v R-2 a R-3: vektory, operace s vektory, skalární a vektorový součin a jejich geometrická a fyzikální interpretace, počítání v bázích.
- 3. Základy vektorové algebry v R-2 a R-3: přechody mezi bázemi.
- 4. Obyčejné diferenciální rovnice: separace proměnných, lineární diferenciální rovnice prvního řádu, fyzikální aplikace (rozpad jader, absorpce záření).
- 5. Obyčejné diferenciální rovnice: lineární rovnice druhého a vyššího řádu s konstatními koeficienty, fyzikální aplikace (pohybové rovnice částice, harmonický oscilátor, tlumené a vynucené kmity).
- 6. Jednoduché soustavy pohybových rovnic.
- 7. Křivočaré souřadnice.
- 8. Křivkový integrál: křivka, parametrizace, křivkový integrál prvního druhu a fyzikální aplikace (délka, hmotnost, těžiště, momenty setrvačnosti křivky), křivkový integrál druhého druhu a fyzikální aplikace (práce podél křivky).
- 9. Skalární funkce dvou a tří proměnných: derivace v daném směru, parciální derivace, gradient.
- 10. Skalární funkce dvou a tří proměnných: úplný diferenciál, kmenová funkce výrazu pro elementární práci (existence potenciálu).
- 11. Vektorové funkce dvou a tří proměnných: definice, Jacobiho zobrazení, integrální křivky vektorového pole (proudnice, siločáry, ...), diferenciální operátory.
- 12. Náhodné veličiny: pravděpodobnost; náhodná veličina, diskrétní a spojité rozdělení, charakteristiky rozdělení (střední hodnota, standardní odchylka, medián, ...), distribuční funkce.
- 13. Náhodné veličiny - aplikace: základy zpracování měření, fyzikální úlohy.
- Literatura
- MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Brno: VUTIUM, 2006, 281 s. Vysokoškolské učebnice. ISBN 80-214-2914-3. info
- KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
- Výukové metody
- Cvičení založené na řešení typických problémů.
- Metody hodnocení
- Závěrečné hodnocení se stanoví ze součtu bodů získaných ze 3 dílčích písemek. Za každou dílčí písemku je možné získat 5 bodů. Dle Studijního a zkušebního řádu Masarykovy univerzity, čl. 9, ods. 2 je účast na výuce povinná. Neúčast na výuce je možné nahradit náhradními úkoly, které budou zveřejněny na stránkach předmětu. Náhradní úkoly je nutno odevzdat do 7.2.2011.
- Navazující předměty
- Informace učitele
- http://physics.muni.cz/~chm/
Přednášky k předmětu jsou obsaženy v předmětu F1421 Základní matematické metody ve fyzice 1. Vřele doporučuji je absolvovat. Výukové materiály a příklady k procvičování naleznete na webové stránce předmětu: http://physics.muni.cz/~chm/. Upozorňuji, že stránka je průběžne aktualizovaná. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Statistika zápisu (podzim 2011 - akreditace, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2011-akreditace/F1422