F1040 Mechanics and molecular physics

Faculty of Science
Autumn 2024
Extent and Intensity
3/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Spousta, Ph.D. (lecturer)
Mgr. Jiří Bartoš, PhD. (seminar tutor)
prof. RNDr. Jana Musilová, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jiří Spousta, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: Mgr. Jiří Bartoš, PhD.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Wed 9:00–11:50 F2 6/2012
  • Timetable of Seminar Groups:
F1040/01: Tue 16:00–17:50 F4,03017
F1040/02: Thu 12:00–13:50 F4,03017
Prerequisites
! F1030 Mechanics
Requirements of Mechanics and molecular physics as one of disciplines of the common part of leaving examination of Physics.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Mechanics and molecular physics is the introductory discipline of most university courses of general physics. Such its role is determined by its illustrativity and accessibility to human sensuous perceiving. The discipline is devoted to students of physics and physics teaching. The two main goals are followed:

* To present to students the problems and methods of classical mechanics on the university course level, including the adequate calculus of mathematical analysis and algebra.

* By the practical teaching of such illustrative and accessible discipline, including the demonstration experiments, to introduce students into procedures and methods of physics, which form the physical thinking of a future specialists, scientists and teachers.
Learning outcomes
Absolving the course a student obtains following abilities and skills:

* Basic knowledge of the system of physics as a discipline.
* Ability to identify fundamental elements of a physical discipline: introductory experiment, principles of the physical discipline(axioms), derived assertions (physical laws), verification experiment.
* The role of mathematics in a physical discipline.
* Ability to apply mathematical tools to problems of physics.
* Ability to obtain derived assertions (physical laws) from principles of classical mechanics(e.g. impulse theorems or conservation laws from Newton laws (axioms), etc.)
* Ability to construct simplified models of mechanical systems.
* Ability to validate an approximate character of models and methods in mechanics from both the physical and mathematical point of view.
* Ability to solve problems and examples of mechanics of classical particles and their systems as well as continuum at the level of basic university course of general physics.
* Ability to interpret fundamental experiments in mechanics.
Syllabus
  • 1. Experiment in physics.
  • 2. Quantities characterizing the motion of bodies.
  • 3. reference frames.
  • 4. Non-relativistic particle dynamics: Fundamental laws of newtonian mechanics.
  • 5. Equations of motion and their solutions.
  • 6. Basic ideas of relativistic mechanics.
  • 7. Work and mechanical energy, mechanics of two-particle isolated system.
  • 8. Mechanics of particle systems: Momentum and angular momentum, momentum laws and conservation laws.
  • 9. Motion of rigid bodies.
  • 10. Mechanics of continuous media: Equilibrium of a liquid. 11. Motion of an ideal and viscous liquid.
  • 12. Macroscopic systems-thermodynamical approach: Macro-state of a system, equilibrium states and stationary processes, thermodynamical laws, basic ideas of non-equilibrium thermodynamics.
  • 13. Macroscopic systems - statistical approach: Micro-state of a system, distribution function, entropy.
  • 14. Thermal properties of matter. Phase transitions.
Literature
    required literature
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika pro porozumění i praxi I (Mathematics for understanding and praxis). Brno: VUTIUM, 2006, 281 pp. Vysokoškolské učebnice. ISBN 80-214-2914-3. info
    recommended literature
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 1. Praha: Academia, 1989, 383 s. ISBN 8020000887. info
  • FEYNMAN, Richard Phillips, Robert B. LEIGHTON and Matthew L. SANDS. Feynmanove prednášky z fyziky. 2. vyd. Bratislava: Alfa, 1986, 451 s. info
    not specified
  • HALLIDAY, David, Robert RESNICK and Jearl WALKER. Fyzika (Physics). 1st ed. Brno, Praha: Vutium, Prometheus, 2001. ISBN 80-214-1868-0. info
  • KVASNICA, Jozef. Mechanika. Vyd. 1. Praha: Academia, 1988, 476 s. info
Teaching methods
Lectures: theoretical explanation of basic concepts and laws of mechanics, combined with demonstration experiments accompanied by correct physical interpretation. Consultative exercises: solving problems for understanding of basic concepts and laws, contains also more complex problems
Assessment methods
Teaching: lectures, consultative exercises Exam: written test (two parts: (a) solving problems, (b) test) and oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2024/F1040